Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Thermo-Mechanical Behaviour of Structural Lightweight Alloys

Author:
ISBN: 9783039213870 / 9783039213887 Year: Pages: 128 DOI: 10.3390/books978-3-03921-388-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The need to reduce the ecological footprint of water/land/air vehicles in this era of climate change requires pushing the limits regarding the development of lightweight structures and materials. This requires a thorough understanding of their thermomechanical behavior at several stages of the production chain. Moreover, during service, the response of lightweight alloys under the simultaneous influence of mechanical loads and temperature can determine the lifetime and performance of a multitude of structural components. The present Special Issue, comprising eight original research articles, is dedicated to disseminating current efforts around the globe aimed at advancing understanding of the thermomechanical behavior of structural lightweight alloys under processing or service conditions.

Material and Process Design for Lightweight Structures

Author:
ISBN: 9783038979586 / 9783038979593 Year: Pages: 162 DOI: 10.3390/books978-3-03897-959-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates to reduce vehicle mass and develop efficient new lightweight designs. Automotive weight reduction with high-strength steel is also witnessing major ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient, lightweight steel components. Although great progress has been made over the past decades in understanding the thermomechanical behavior of these materials, their extensive use as lightweight solutions is still limited due to numerous challenges that play a key role in cost competitiveness. Hence, significant research efforts are still required to fully understand the anisotropic material behavior, failure mechanisms, and, most importantly, the interplay between industrial processing, microstructure development, and the resulting properties. This Special Issue reprint book features concise reports on the current status in the field. The topics discussed herein include areas of manufacturing and processing technologies of materials for lightweight applications, innovative microstructure and process design concepts, and advanced characterization techniques combined with modeling of material’s behavior.

Processing-Structure-Property Relationships in Metals

Authors: ---
ISBN: 9783039217700 / 9783039217717 Year: Pages: 240 DOI: 10.3390/books978-3-03921-771-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.

Keywords

titanium composites --- in situ secondary phases --- microstructure --- inductive hot pressing --- intermetallic --- bainite rail --- tempering --- retained austenite --- tensile property --- impact toughness --- cryorolling --- reduction --- ultrafine grain --- secondary recrystallization --- high strength --- microstructure inhomogeneity --- non-monotonic simple shear strains --- shear strain reversal --- severe plastic deformation --- texture inhomogeneity --- tensile properties --- Mg-10Y-6Gd-1.5Zn-0.5Zr --- ultra-fine grain --- aging treatment --- precipitation behavior --- mechanical property --- multimodal --- AZ91 alloy --- equal channel angular pressing --- aging --- high pressure die casting --- aluminum alloy --- prediction model --- process monitoring --- static mechanical behavior --- fracture surface --- microstructure. --- casting --- Al 6061 alloys --- shrinkage --- porosity --- steering knuckles --- Al alloys --- warm working --- mechanical properties --- dental materials --- metal posts --- computer-aided design (CAD) --- image analysis --- mechanical properties --- finite element analysis --- additive manufacturing --- Al alloys --- wear --- cavitation erosion --- SEM --- microstructure --- high speed steel --- nanostructured coatings --- thin films --- FEGSEM --- tribology --- Nb tube --- caliber-rolling --- grain boundaries --- texture --- electron backscatter diffraction --- damping --- aluminum film --- grain boundary --- anelasticity --- thin aluminum sheet --- alloys --- aeronautic applications --- mechanical properties --- corrosion resistance --- EBM --- SEBM --- macro-instrumented indentation test --- property-microstructure-process relationship --- mechanical properties --- indentation hardness --- indentation modulus --- tensile properties --- Ti-6Al-4V alloy --- ?-platelet thickness --- columnar microstructure --- n/a

Microstructure and Mechanical Properties of Structural Metals and Alloys

Author:
ISBN: 9783038975052 / 9783038975069 Year: Pages: 272 DOI: 10.3390/books978-3-03897-506-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.

Keywords

Mg–Sm–Zn–Zr --- dynamic precipitation --- microstructure --- mechanical property --- bimodal ferrite steel --- ultrafine-grained microstructure --- mechanical properties --- corrosion resistance --- abnormal grain growth --- grain boundary engineering --- electron backscattered diffraction --- growth rate --- Al metal matrix composites --- microstructure --- mechanical properties --- strengthening mechanism --- hot compression --- dynamic recovery --- dynamic recrystallization --- texture --- aluminum alloys --- Al-Fe-Si-Zr system --- microstructure --- hardness --- electrical conductivity --- metal–matrix composite --- high-pressure torsion --- microstructure evolution --- microhardness --- shape memory alloy --- columnar grain --- Cu-Al-Mn --- elastocaloric effect --- strain rate --- measuring temperature --- creep --- lead-free solder --- Sb solder --- Sn-8.0Sb-3.0Ag --- solder microstructure --- martensitic steels --- creep --- precipitation --- electron microscopy --- high-Mn TWIP steel --- cold rolling --- annealing --- recovery --- recrystallization --- strengthening --- austenitic 304 stainless steels --- sub-merged arc welding --- post-weld heat treatment --- aluminum alloys --- aging --- precipitation --- electrical resistivity --- mechanical properties --- ferritic steel --- irradiation --- nanoindentation --- hardness --- transmission electron microscopy (TEM) --- microstructure --- high-entropy alloys --- high-pressure torsion --- microstructure evolution --- twinning --- mechanical properties --- welded rotor --- weld metal --- impact toughness --- PWHT --- microstructure evolution --- Cu-Cr-Zr --- precipitation --- orientation relationship --- recrystallization --- annealing twins --- structural steel plate --- nonmetallic inclusions --- rare earth control --- M23C6 --- ion irradiation --- M6C --- amorphization --- RAFM steels --- hot stamping --- press hardening --- martensitic expansion --- force peak --- cycle time --- high-Mn steel --- deformation twinning --- dynamic recrystallization --- grain refinement --- work hardening --- in situ tensile testing --- super duplex stainless steel --- SDSS --- low-temperature --- ?-phase --- SEM --- EBSD --- microstructure analysis --- n/a

Structure and Mechanical Properties of Transition Group Metals, Alloys, and Intermetallic Compounds

Author:
ISBN: 9783039211463 / 9783039211470 Year: Pages: 222 DOI: 10.3390/books978-3-03921-147-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The aim of this Special Issue is to present the latest theoretical and experimental achievements concerning the mechanisms of microstructural change in metallic materials subject to different processing methods, and their effect on mechanical properties. It is my pleasure to present a series of compelling scientific papers written by scientists from the community of transition group metals, alloys, and intermetallic compounds.

Keywords

metal matrix composites --- laser metal deposition --- Inconel 625 --- additive manufacturing --- laser processing --- metal matrix composites --- Z-pin reinforcement --- delamination --- carbon fiber --- strengthening mechanisms --- severe plastic deformation (SPD) --- cross-channel extrusion (CCE) --- back pressure (BP) --- numerical simulation (FEM) --- physical modeling technique (PMT) --- metal–matrix composites (MMCs) --- carbon fiber --- mechanical properties --- z-pin reinforcement --- laminate --- titanium alloys --- high pressure torsion --- microhardness --- Cu–Ag alloy --- high-pressure torsion --- ultrafine microstructure --- phase dissolution --- microhardness --- friction stir welding --- heat treatment --- AA2519 --- microstructure --- fatigue --- fractography --- AZ91 --- magnesium alloys --- creep --- high pressure die casting --- additive manufacturing --- Ti-6Al-4V --- LENS --- mechanical characterization --- twin roll casting --- magnesium alloy --- calcium --- Mg-Zn-Al-Ca alloy --- texture --- flow curve --- processing map --- honeycomb structure --- additive manufacturing --- laser engineered net shaping --- LENS --- Ti6Al4V alloy --- energy absorption --- dynamic tests --- solidification thermal parameters --- Cu-Al-Ni-Fe bronze alloys --- hardness --- microhardness --- specific intermetallics --- MAX phase --- Ti3SiC2 --- composite --- high energy ball milling --- spark plasma sintering --- structure --- mechanical properties --- deformation behavior --- tribaloy-type alloy --- CoCrMoSi alloy coatings --- T-800 alloy --- Laves phase --- Laser Engineered Net Shaping (LENSTM) --- electron microscopy (in situ SEM) --- delamination --- metal matrix composites (MMCs) --- z-pinning

3D Printing of Metals

Author:
ISBN: 9783039213412 / 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

New Results and Advances in PGE Mineralogy in Ni-Cu-Cr-PGE Ore Systems

Authors: ---
ISBN: 9783039217168 / 9783039217175 Year: Pages: 228 DOI: 10.3390/books978-3-03921-717-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-12-09 16:39:37
License:

Loading...
Export citation

Choose an application

Abstract

The book (Special Issue) presents impressive new results related to a wide spectrum of occurrences of platinum-group minerals (PGM) and natural compounds enriched in platinum-group elements (PGE), which are associated with various complexes and deposits, such as Uralian-Alaskan-type complexes, layered intrusions and placers. The geographical locations of the involved deposits and complexes include, on a truly international scale, different areas of the Urals, Western and Eastern Sayans and Gornaya Shoria in Siberia, Southern Central Asian Orogenic Belt in China, Northern Michigan, USA, South Africa and Zimbabwe, etc. Of particular interest is the first description of a new species of PGM, thalhammerite (approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association), which is a new species of palladium-silver sulfobismuthide discovered in the Noril’sk region of Russia. Additionally, comprehensive reviews, on compositional variations in Pt–Fe alloy minerals and processes of transformations of PGM in exogenic environments, are presented which will also attract attention from international readers.

Keywords

platinum-group elements --- platinum-group minerals --- PGE alloys --- chromian spinel --- schemes of substitution --- Ti- and REE-rich inclusions --- Sisim placer zone --- Lysanskiy complex --- Eastern Sayans --- Russia --- platinum-group elements --- gold --- platinum-group minerals --- placer deposits --- ophiolite complexes --- western Sayans --- Russia --- thalhammerite --- platinum-group mineral --- Pd9Ag2Bi2S4 phase --- reflectance data --- X-ray-diffraction data --- crystal structure --- Komsomolsky mine --- Talnakh deposit --- Noril’sk region --- Russia --- chromitite --- platinum group minerals --- primary inclusions --- ophiolite --- Alaskan-type complex. --- Urals --- Russia --- Alaskan-type complex --- Central Asian Orogenic Belt --- PGM --- PGE mineralization --- Bushveld Complex --- South Africa --- Great Dyke --- Zimbabwe --- platinum-group minerals --- primary ores --- oxide ores --- placers --- allogenic --- authigenic --- Echo Lake --- Midcontinent --- palladium --- platinum --- magnetite --- gabbro --- platinum-group elements --- platinum-group minerals --- Pt–Fe alloys --- compositional variations --- element substitutions --- placer deposits --- ore mineralization --- ultramafic-mafic complexes --- Ural Platinum belt --- Ural-Alaskan massif --- Svetloborsky massif --- placer system --- platinum group elements --- platinum group minerals --- platiniferous tetra-auricupride --- Pt-for-Au substitution --- platinum --- gold --- ophiolite --- Bolshoy Khailyk placer --- western Sayans --- Russia --- platinum-group elements --- gold --- platinum-group minerals --- placer deposits --- micrometric inclusions --- Gornaya Shoria --- Siberia --- Russia --- n/a

Machining—Recent Advances, Applications and Challenges

Authors: ---
ISBN: 9783039213771 / 9783039213788 Year: Pages: 554 DOI: 10.3390/books978-3-03921-378-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue Machining—Recent Advances, Applications and Challenges is intended as a humble collection of some of the hottest topics in machining. The manufacturing industry is a varying and challenging environment where new advances emerge from one day to another. In recent years, new manufacturing procedures have retained increasing attention from the industrial and scientific community. However, machining still remains the key operation to achieve high productivity and precision for high-added value parts. Continuous research is performed, and new ideas are constantly considered. This Special Issue summarizes selected high-quality papers which were submitted, peer-reviewed, and recommended by experts. It covers some (but not only) of the following topics: High performance operations for difficult-to-cut alloys, wrought and cast materials, light alloys, ceramics, etc.; Cutting tools, grades, substrates and coatings. Wear damage; Advanced cooling in machining: Minimum quantity of lubricant, dry or cryogenics; Modelling, focused on the reduction of risks, the process outcome, and to maintain surface integrity; Vibration problems in machines: Active and passive/predictive methods, sources, diagnosis and avoidance; Influence of machining in new concepts of machine–tool, and machine static and dynamic behaviors; Machinability of new composites, brittle and emerging materials; Assisted machining processes by high-pressure, laser, US, and others; Introduction of new analytics and decision making into machining programming. We wish to thank the reviewers and staff from Materials for their comments, advice, suggestions and invaluable support during the development of this Special Issue.

Keywords

dry-cutting --- concrete --- segmented diamond blade --- topography --- diameter variation --- weight loss --- in situ estimation --- SACE-drilled hole depth --- spark-assisted chemical engraving --- glass machining --- computer vision --- electrochemical discharge machining --- butt weld joint --- fatigue --- crack growth rate --- weld reinforcement --- cooling rate --- artificial neutral network --- cutting parameters --- magnesium alloys --- optimization --- prime machining costs --- surface roughness --- electropulsing --- machinability --- chip compression ratio --- current density --- specific cutting energy --- cutting edge microgeometry --- residual stress --- finite element model --- cutting edge preparation --- Inconel 718 --- stiffness properties --- parameter identification --- connections --- machine tool --- response surface methodology --- design of experiments --- modal testing --- plastic zone --- fracture mechanism --- steel sheet --- cutting process --- Huber–Mises stress --- finite element method --- microscopic analysis --- PVD Ti0.41Al0.59N/Ti0.55Al0.45N coating --- cutting temperature --- Inconel 718 --- cutting tool wear --- secondary adhesion wear --- turning --- machining --- aluminium --- flank super abrasive machining (SAM) --- flank milling --- Inconel® 718 --- roughness --- residual stress --- machine vision --- on-machine monitoring --- tool insert condition --- computer numerical control --- turning machine tools --- multi-beam laser --- heat transfer analysis --- fast simulation --- GPU --- analytic solution --- minimum quantity lubrication --- surface grinding --- multi-objective optimization --- grey relational analysis --- surface topography --- sustainable machining --- Gamma-TiAl --- superalloys --- slight materials --- drilling --- titanium aluminides --- additive manufacturing --- single point incremental sheet forming --- residual stresses --- X-ray diffraction --- ultra-precision machining --- slow tool servo --- surface topography --- simulation --- microlens array --- sinusoidal grid --- Milling stability --- variable pitch --- chatter --- self-excitation --- milling --- ceramics --- ductile machining --- PCD --- corner radius --- material removal rate --- adhesive --- machining --- modelling --- dry --- CFRP/UNS A92024 --- induction assisted milling --- tool wear --- taguchi method --- cutting tool --- machining temperatures at two deformation zones --- force–temperature correlation through analytical modeling --- high computational efficiency --- real-time prediction --- hybrid stacks drilling --- minimum quantity lubrication --- hole quality --- tool wear --- WEDM --- EN 31 steel --- surface roughness --- fractal dimension --- ANN --- GA --- cryogenic machining --- cutting tool --- cutting geometry --- titanium --- power consumption --- material-removal rate --- specific energy consumption --- grain density --- modeling --- shape memory alloy --- superelastic nitinol --- WEDM --- heat transfer search algorithm --- DSC test --- shape memory effect --- dish angle --- trochoidal step --- response surface methodology --- surface roughness --- desirability approach --- tool wear --- trochoidal milling --- titanium alloy --- chip morphology --- thin-wall machining --- chatter --- vibration --- deflection --- damping --- prediction --- workholding --- fixture --- dynamic --- stability --- titanium alloys --- machining --- turning --- machinability --- tool wear --- laser-assisted machining --- Taguchi method --- optimal machining conditions --- machining characteristic --- milling --- the cutting force components --- vibrations --- magnesium alloys --- artificial neural networks

Plasma Catalysis

Author:
ISBN: 9783038977506 Year: Pages: 246 DOI: 10.3390/books978-3-03897-751-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering --- Technology (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC

Physical Metallurgy of High Manganese Steels

Authors: ---
ISBN: 9783039218561 / 9783039218578 Year: Pages: 212 DOI: 10.3390/books978-3-03921-857-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Mining and Metallurgy
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue ‘Physical Metallurgy of High Manganese Steels’ addresses the highly fascinating class of manganese-alloyed steels with manganese contents well above 3 mass%. The book gathers manuscripts from internationally recognized researchers with stimulating new ideas and original results. It consists of fifteen original research papers. Seven contributions focus on steels with manganese contents above 12 mass%. These contributions cover fundamental aspects of process-microstrcuture-properties relationships with processes ranging from cold and warm rolling over deep rolling to heat treatment. Novel findings regarding the fatigue and fracture behavior, deformation mechanisms, and computer-aided design are presented. Additionally, the Special Issue also reflects the current trend of reduced Mn content (3-12 mass%) in advanced high strength steels (AHSS). Eight contributions were dedicated to these alloys, which are often referred to as 3rd generation AHSS, medium manganese steels or quenching and partitioning (Q&P/Q+P) steels. The interplay between advanced processing, mainly novel annealing variants, and microstructure evolution has been addressed using computational and experimental approaches. A deeper understanding of strain-rate sensitivity, hydrogen embrittlement, phase transformations, and the consequences for the materials’ properties has been developed. Hence, the topics included are manifold, fundamental-science oriented and, at the same time, relevant to industrial application.

Keywords

medium-manganese steel --- TRIP --- strain-rate sensitivity --- Lüders band --- serrated flow --- in-situ DIC tensile tests --- TWIP steel --- deformation twinning --- serrated flow --- dynamic strain aging --- damage --- fracture --- medium-manganese --- forging --- austenite reversion --- mechanical properties --- microstructure --- D&amp --- P steel --- processing --- microstructure --- phase transformation --- dislocation density --- mechanical properties --- MMn steel X20CrNiMnVN18-5-10 --- V alloying --- corrosion resistance --- precipitations --- ultrafine grains --- high-manganese steels --- high-entropy alloys --- alloy design --- plastic deformation --- annealing --- microstructure --- texture --- mechanical properties --- neutron diffraction --- austenite stability --- medium manganese steel --- double soaking --- localized deformation --- medium-Mn steel --- hot-stamping --- double soaking --- continuous annealing --- quenching and partitioning --- high strength steel --- high manganese steel --- crash box --- lightweight --- multiscale simulation --- high-Mn steels --- twinning induced plasticity --- cold rolling --- recrystallization annealing --- grain refinement --- strengthening --- austenitic high nitrogen steel (HNS) --- cold deformation --- fatigue --- high manganese steel --- warm rolling --- processing --- microstructure --- texture --- mechanical properties --- deformation behavior --- high-manganese steel --- deep rolling --- TWIP --- TRIP --- near surface properties --- residual stresses --- fatigue behavior --- intercritical annealing --- medium manganese steel --- phase field simulation --- medium-Mn steel --- austenite-reversed-transformation --- retained austenite --- hydrogen embrittlement --- ultrafine-grained microstructure --- strain-hardening behavior --- n/a

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (11)


License

CC by-nc-nd (11)


Language

eng (11)


Year
From To Submit

2019 (11)

-->