Search results: Found 19

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Multiscale and Innovative Kinetic Approaches in Heterogeneous Catalysis

Authors: ---
ISBN: 9783039211791 / 9783039211807 Year: Pages: 214 DOI: 10.3390/books978-3-03921-180-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Kinetics and reactor modeling for heterogeneous catalytic reactions are prominent tools for investigating and understanding catalyst functionalities at nanoscale and the related rates of complex reaction networks. This book illustrates some examples related to the transformation of simple to more complex feedstocks, including different types of reactor designs, i.e., steady-state, transient plug flow reactors, and TAP reactors for which there is sometimes a strong gap in the operating conditions from ultra-high-vacuum to high-pressure conditions. In conjunction, new methodologies have emerged, giving rise to more robust microkinetics models. As exemplified, they include the kinetics and the dynamics of the reactors and span a large range of length and time scales. The objective of this Special Issue is to provide contributions that can illustrate recent advances and novel methodologies for elucidating the kinetics of heterogeneous reactions and the necessary multiscale approach for optimizing the reactor design. This book is dedicated to postgraduate and scientific researchers, and experts in heterogeneous catalysis. It may also serve as a source of original information for the elaboration of lessons on catalysis for Master students.

Micro/Nano Materials for Clean Energy and Environment

Authors: ---
ISBN: 9783039211289 / 9783039211296 Year: Pages: 123 DOI: 10.3390/books978-3-03921-129-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:41:30
License:

Loading...
Export citation

Choose an application

Abstract

The Tsinghua University–University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology (JCMEET) is a platform. It was established on Nov.11, 2017. The Chairperson of University Council of Tsinghua University, Dr. Xu Chen, and the President of the University of Waterloo, Dr. Feridun Hamdullahpur, attended the opening ceremony and unveiled the nameplate for the joint research center on 29th of March, 2018. The research center serves as a platform for researchers at both universities to conduct joint research in the targeted areas, and to meet regularly for information exchange, talent exchange, and knowledge mobilization, especially in the fields of micro/nano, energy, and environmental technologies. The center focuses on three main interests: micro/nano energy technology, micro/nano pollution control technology, and relevant fundamental research. In order to celebrate the first anniversary of the Joint Research Center, we were invited to serve as the Guest Editors of this Special Issue of Materials focusing on the topic of micro/nano-materials for clean energy and environment. It collects research papers from a broad range of topics related to micro/nanostructured materials aimed at future energy resources, low emission energy conversion, energy storage, energy efficiency improvement, air emission control, air monitoring, air cleaning, and many other related applications. This Special Issue provides an opportunity and example for the international community to discuss how to actively address the energy and environment issues that we are facing.

Ice Crystals

Author:
ISBN: 9783039218905 / 9783039218912 Year: Pages: 104 DOI: 10.3390/books978-3-03921-891-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Ice crystals are the most ubiquitous material found in the cryosphere environment of the Earth, in the planetary system, and also in our daily lives. In recent years, ice crystals have increased in importance as one of the key materials for finding solutions to settle various environmental concerns at a global scale. Furthermore, ice crystals are unique materials which are potentially extremely useful in various applications, for example, within the food sciences, medical sciences, and other fields. In dealing with these interesting subjects, research on ice crystals has been more actively pursued in recent years. The Special Issue “Ice Crystals” presents a wide varieties of topics related to ice crystals. It can be considered as a status report reviewing the recent research on ice crystals and serves to provide readers with information on the latest developments concerning ice crystals.

Biological and Biogenic Crystallization

Author:
ISBN: 9783038975212 Year: Pages: 106 DOI: 10.3390/books978-3-03897-522-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

The intention of the Special Issue ""Biological and Biogenic Crystallization"" was to create an international platform aimed at covering a broad field of results involving the crystallization of biological molecules, including virus and protein crystallization, biogenic crystallization including physiological and pathological crystallization taking place in living organisms (human beings, animals, plants, bacteria, etc.), and bio-inspired crystallization. Despite many years of research on biological and biogenic crystals, there are still open questions as well as hot and timely topics. This Special Issue contains seven articles that present a cross-section of the current research activities in the of field of biological and biogenic crystals. The authors of the presented articles prove the vibrant and topical nature of this field. We hope that this Special Issue will serve as a source of inspiration for future investigations, and will be useful for scientists and researchers who work on the exploration of biological and biogenic crystals.

Mercury and Methylmercury Toxicology and Risk Assessment

Author:
ISBN: 9783038979708 / 9783038979715 Year: Pages: 142 DOI: 10.3390/books978-3-03897-971-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Mercury is a global pollutant that affects the health of both humans and ecosystems. This Special Issue collects three review papers and six research articles that report on the latest findings on the mechanisms of mercury toxicology and its impacts on environmental health. This collection of papers provides useful, new information on the mechanisms of mercury toxicity and methods of improving the risk assessment of mercury exposure.

Advanced Synchrotron Radiation Techniques for Nanostructured Materials

Author:
ISBN: 9783039216802 / 9783039216819 Year: Pages: 138 DOI: 10.3390/books978-3-03921-681-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Nanostructured materials exploit physical phenomena and mechanisms that cannot be derived by simply scaling down the associated bulk structures and phenomena; furthermore, new quantum effects come into play in nanosystems. The exploitation of these emerging nanoscale interactions prompts the innovative design of nanomaterials. Understanding the behavior of materials on all length scales—from the nanostructure up to the macroscopic response—is a critical challenge for materials science. Modern analytical technologies based on synchrotron radiation (SR) allow for the non-destructive investigation of the chemical, electronic, and magnetic structure of materials in any environment. SR facilities have developed revolutionary new ideas and experimental setups for characterizing nanomaterials, involving spectroscopy, diffraction, scatterings, microscopy, tomography, and all kinds of highly sophisticated combinations of such investigation techniques. This book is a collection of contributions addressing several aspects of synchrotron radiation as applied to the investigation of chemical, electronic, and magnetic structure of nanostructured materials. The results reported here provide not only an interesting and multidisciplinary overview of the chemicophysical investigations of nanostructured materials carried out by state-of-the-art SR-induced techniques, but also an exciting glance into the future perspectives of nanomaterial characterization methods.

Protein Crystallization under the Presence of an Electric Field

Author:
ISBN: 9783038975199 / 9783038975205 Year: Pages: 90 DOI: 10.3390/books978-3-03897-520-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book entitled “Protein Crystallization under the Presence of an Electric Field” covers recent trends and original contributions on the use of electric fields (internal and external) for applications for nucleation control and the effect on the kinetics of crystallization processes. This book also includes basic strategies for growing crystals of biological macromolecules for characterization via X-ray and neutron diffraction as well as using modern X-ray-free electron-lasers. There are six main topics covered on this book, including recent insights into the crystallization process from nucleation and growth peculiarities, when using different kinds of electric fields; the effect of external electric fields on the kinetics of the dislocation-free growth of model proteins; the use of very strong external electric fields for the crystallization of a model protein glucose isomerase; and the use of alternant electric fields using different kinds of pulses and their combination with strong magnetic fields. There are also contributions related to applications in developing electron-transfer devices as well as graphene-based platforms for electrocrystallization and in situ X-ray diffraction characterization.

Ironmaking and Steelmaking

Authors: ---
ISBN: 9783039213290 / 9783039213306 Year: Pages: 464 DOI: 10.3390/books978-3-03921-330-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

ironmaking --- microwaves --- carbothermal reduction --- iron oxides --- emission spectrum --- ore-carbon briquette --- CO–CO2 atmosphere --- simulation --- re-oxidation --- reduction --- electroslag cladding --- high speed steel --- ductile cast iron --- composite roll --- bonding interface --- high-phosphorus iron ore --- fluorapatite --- carbothermal reduction --- vaporization dephosphorization --- iron ore pellets --- compressive strength (CS) --- prediction model --- artificial neural network --- principal component analysis --- crystallization behaviors --- crystallization rate --- anosovite crystals --- silicate crystals --- titanium slag --- blast furnace --- copper stave --- hydrogen attack --- slag crust --- heat-affected zone --- high heat input welding --- Ca deoxidation --- inclusion control --- intragranular acicular ferrite --- concentrate --- iron ore --- agglomerate --- structure --- phase analysis --- Mg deoxidation --- inclusions --- Al addition --- high-heat-input welding --- heat-affected zone --- toughness --- shot peening --- Barkhausen noise --- crystallite size --- carbon composite pellet --- direct reduction --- shrinkage --- kinetics --- rotary hearth furnace --- hydrogen plasma --- smelting reduction --- HPSR --- iron oxide --- plasma arc --- ionization degree --- sulfur distribution ratio --- liquid area --- carbon-saturated iron --- phosphate capacity --- sulfide capacity --- phosphorus distribution ratio --- sulfur distribution ratio --- evaluation of coupling relationship --- secondary refining process, CaO–based slags --- iron sulfate --- TG analysis --- thermal treatment --- iron oxide --- kinetics --- activation energy --- high-aluminum iron ore --- synergistic reduction --- high-manganese iron ore --- hercynite --- fayalite --- flow velocity --- casting speed --- gas flow rate --- flow pattern --- continuous casting --- Cr recovery --- self-reduction briquette --- reaction mechanism --- mold flux --- low fluorine --- internal crack --- surface roughness --- slag film --- vanadium titano-magnetite --- gas-based reduction --- carbon monoxide --- hydrogen --- and nitrogen --- kinetics --- pellet size --- liquid steel --- non-contact measurement --- oxides --- steel-making --- blast furnace --- solid flow --- cold experiment --- direct element method --- Wilcox–Swailes coefficient --- viscosity --- BaO --- CaO/Al2O3 ratio --- modified NPL model --- ultrafine particles exposure --- steelmaking factory --- chemical composition --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- iso-conversional method --- Al-TRIP steel --- surface depression --- cracks --- non-metallic inclusion --- mold flux --- reactivity --- hot metal pre-treatment --- desiliconisation --- dephosphorisation --- solid and gaseous oxygen --- fork --- flat steel --- inclusions --- 33MnCrTiB --- slag --- carbon dioxide --- injection --- blast furnace --- converter --- combustion --- oxygen steelmaking --- refining kinetics --- slag formation --- penetration theory --- oxygen blast furnace --- COREX --- static process model --- integrated steel plant --- material flow --- energy consumption --- CO2 emissions --- oil-pipeline steel --- Ca-treatment --- non-metallic inclusions --- electrolytic extraction --- corrosion --- n/a

Biomass Chars: Elaboration, Characterization and Applications ?

Authors: ---
ISBN: 9783039216628 / 9783039216635 Year: Pages: 342 DOI: 10.3390/books978-3-03921-663-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Agriculture (General) --- Biology --- Science (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Biomass can be converted to energy, biofuels, and bioproducts via thermochemical conversion processes, such as combustion, pyrolysis, and gasification. Combustion technology is most widely applied on an industrial scale. However, biomass gasification and pyrolysis processes are still in the research and development stage. The major products from these processes are syngas, bio-oil, and char (called also biochar for agronomic application). Among these products, biomass chars have received increasing attention for different applications, such as gasification, co-combustion, catalysts or adsorbents precursors, soil amendment, carbon fuel cells, and supercapacitors. This Special Issue provides an overview of biomass char production methods (pyrolysis, hydrothermal carbonization, etc.), characterization techniques (e.g., scanning electronic microscopy, X-ray fluorescence, nitrogen adsorption, Raman spectroscopy, nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption and mass spectrometry), their properties, and their suitable recovery processes.

Keywords

biomass production --- multicriteria model --- ELECTRE III --- combustion --- oxygen enrichment --- low-rank coal char --- char oxidation --- reaction kinetics --- salty food waste --- FT-IR --- pyrolysis --- biochar --- NaCl --- hydrothermal carbonization --- anaerobic digestion --- poultry slaughterhouse --- sludge cake --- energy recovery efficiency --- gasification --- kinetic model --- active site --- chemisorption --- hydrothermal carbonization (HTC) --- Chinese reed --- biocrude --- biochar --- high heating value (HHV) --- biochar --- steam --- gasification --- chemical speciation --- AAEMs --- underground coal gasification --- ash layer --- effective diffusion coefficient --- internal diffusion resistance --- pyrolysis --- hydrothermal carbonization --- biochar engineering --- porosity --- nutrients --- polycyclic aromatic hydrocarbon (PAH) --- nitrogen --- biomass --- amino acid --- pyrrole --- NOx --- pyrolysis --- grape marc --- kinetic models --- characterization --- pyrolysis --- Texaco pilot plant --- reactor modelling --- ash fusion temperature (AFT) --- melting phenomenon --- food waste compost --- sawdust --- pyrolysis --- biochar --- thermogravimetric analysis (TGA) --- calorific value --- biogas purification --- coconut shells --- biomass valorization --- textural characterization --- adsorption isotherms --- breakthrough curves --- olive mill solid wastes (OMSWs) --- fixed bed combustor --- pellets --- combustion parameters --- gaseous emissions --- waste wood --- interactions --- interferences --- partial combustion reaction in gasification --- Boudouard reaction in gasification --- MTDATA --- biomass --- steam gasification --- kinetics --- pyrolysis conditions --- thermogravimetric analysis --- characteristic time analysis --- biomass --- combustion --- thermogravimetric analysis --- kinetic parameters --- thermal characteristics --- food waste --- food-waste biochar --- pyrolysis --- NaCl template --- desalination --- biochar --- ash from biomass --- giant miscanthus --- fertilisation --- CO2 adsorption --- CH4 adsorption --- biomass --- activated carbon --- n/a

Recent Advances in Water and Wastewater Treatment with Emphasis in Membrane Treatment Operations

Authors: ---
ISBN: 9783038976240 Year: Pages: 230 DOI: 10.3390/books978-3-03897-625-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The present Special Issue brings together recent research findings from renowned scientists in the field of water treatment and assembled contributions on advanced technologies applied to the treatment of wastewater and drinking water, with emphasis on novel membrane treatment technologies. 12 research contributions have highlighted various processes and technologies, which can achieve effective treatment and purification of wastewater and of drinking water, aiming (occasionally) for water reuse. The main topics which are analyzed are the use of novel type membranes in bioreactors, the use of modified membranes, for example using vacuum membrane distillation, the fouling of membranes, the problem of arsenic, antimony and chromium contamination in groundwaters and its removal and the use of novel technologies for more efficient ozonation.

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (19)


License

CC by-nc-nd (19)


Language

eng (19)


Year
From To Submit

2019 (18)

2018 (1)