Search results: Found 2

Listing 1 - 2 of 2
Sort by
Thioredoxin and Glutaredoxin Systems

Authors: ---
ISBN: 9783038978367 / 9783038978374 Year: Pages: 280 DOI: 10.3390/books978-3-03897-837-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue features recent data concerning thioredoxins and glutaredoxins from various biological systems, including bacteria, mammals, and plants. Four of the sixteen articles are review papers that deal with the regulation of development of the effect of hydrogen peroxide and the interactions between oxidants and reductants, the description of methionine sulfoxide reductases, detoxification enzymes that require thioredoxin or glutaredoxin, and the response of plants to cold stress, respectively. This is followed by eleven research articles that focus on a reductant of thioredoxin in bacteria, a thioredoxin reductase, and a variety of plant and bacterial thioredoxins, including the m, f, o, and h isoforms and their targets. Various parameters are studied, including genetic, structural, and physiological properties of these systems. The redox regulation of monodehydroascorbate reductase, aminolevulinic acid dehydratase, and cytosolic isocitrate dehydrogenase could have very important consequences in plant metabolism. Also, the properties of the mitochondrial o-type thioredoxins and their unexpected capacity to bind iron–sulfur center (ISC) structures open new developments concerning the redox mitochondrial function and possibly ISC assembly in mitochondria. The final paper discusses interesting biotechnological applications of thioredoxin for breadmaking.

Keywords

methionine --- methionine sulfoxide --- methionine sulfoxide reductase --- physiological function --- protein --- plant --- repair --- redox homeostasis --- signaling --- stress --- mitochondria --- thioredoxin --- iron–sulfur cluster --- redox regulation --- ALAD --- tetrapyrrole biosynthesis --- redox control --- thioredoxins --- posttranslational modification --- chlorophyll --- redox regulation --- thioredoxin --- ferredoxin-thioredoxin reductase --- chloroplast --- H2O2 --- redox signalling --- development --- regeneration --- adult stem cells --- metazoan --- cyanobacteria --- thioredoxin --- photosynthesis --- redox active site --- thioredoxin --- disulfide --- flavin --- NADPH --- X-ray crystallography --- SAXS --- methanoarchaea --- chilling stress --- cold temperature --- posttranslational modification --- regulation --- ROS --- thiol redox network --- thioredoxin --- thioredoxin --- Calvin-Benson cycle --- photosynthesis --- carbon fixation --- chloroplast --- macromolecular crystallography --- protein-protein recognition --- electrostatic surface --- Chlamydomonas reinhardtii --- thioredoxin --- glutaredoxin --- legume plant --- symbiosis --- redox homeostasis --- stress --- thioredoxin --- monodehydroascorbate reductase --- water stress --- protein oxidation --- antioxidants --- ascorbate --- glutathione --- wheat --- thioredoxin --- thioredoxin reductase --- baking --- redox --- dough rheology --- protein oxidation --- methionine oxidation --- methionine sulfoxide reductases --- oxidized protein repair --- ageing --- Chlamydomonas reinhardtii --- cysteine alkylation --- cysteine reactivity --- MALDI-TOF mass spectrometry --- thioredoxin --- X-ray crystallography --- Isocitrate dehydrogenase --- glutathionylation --- nitrosylation --- glutaredoxin --- Arabidopsis thaliana --- thioredoxins --- plastidial --- specificity --- function --- proteomic --- photosynthesis --- Calvin cycle --- n/a

Plant Innate Immunity 2.0

Author:
ISBN: 9783038975809 Year: Pages: 386 DOI: 10.3390/books978-3-03897-581-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

dieback --- disease management --- Lasiodiplodia theobromae --- mango --- pathogenicity --- Bromoviridae --- plant–virus interactions --- plant defense response --- Prune dwarf virus --- replication process --- systemic and local movement --- plant proteases --- plant immunity --- MTI --- ETI --- SAR --- ISR --- RNA silencing --- RTNLB --- Agrobacterium --- biotic stress responses --- calcium --- calcium signature --- calmodulin --- CMLs --- CDPKs --- plant immunity --- symbiosis --- cell wall --- cellulose synthase --- hypersensitive response --- pathogenesis related-protein 2 --- plant-virus interaction --- Potato virus Y --- ultrastructure --- aphid resistance --- Arabidopsis thaliana --- hydroperoxide lyase --- Macrosiphum euphorbiae --- Myzus persicae --- Solanum lycopersicum --- ?-3 fatty acid desaturase --- Arabidopsis --- azelaic acid --- glycerol-3-phosphate --- light dependent signalling --- methyl salicylate --- N-hydroxypipecolic acid --- pipecolic acid --- salicylic acid --- SAR signalling --- spectral distribution of light --- tobacco --- rice --- Chilo suppressalis --- mitogen-activated protein kinase 4 --- jasmonic acid --- salicylic acid --- ethylene --- herbivore-induced defense response --- downy mildew --- grapevine --- PRRs --- PTI --- VaHAESA --- bismerthiazol --- rice --- induced defense responses --- chemical elicitors --- Sogatella furcifera --- defense-related signaling pathways --- tomato gray mold --- tomato leaf mold --- Bacillus subtilis --- biological control --- Capsicum annuum --- Ralstonia solanacearum --- CaWRKY40b --- immunity --- negative regulator --- transcriptional modulation --- Capsicum annuum --- CaWRKY22 --- immunity --- Ralstonia Solanacearum --- WRKY networks --- metabolomics --- plant defence --- plant–microbe interactions --- priming --- pre-conditioning --- citrus decline disease --- Citrus sinensis --- Bakraee --- “Candidatus Liberibacter” --- “Candidatus Phytoplasma” --- microbiota --- innate immunity --- basal defense --- rice blast --- Magnaporthe oryzae --- proteomics --- iTRAQ --- candidate disease resistance gene --- disease resistance --- downy mildew --- garden impatiens --- leaf transcriptome --- New Guinea impatiens --- RNA-Seq --- polyphenol oxidase --- Camellia sinensis --- Ectropis obliqua --- wounding --- regurgitant --- rice --- OsGID1 --- gibberellin --- herbivore-induced plant defenses --- Nilaparvata lugens --- plant protection products --- agrochemicals --- sustainable crop protection --- food security

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2019 (2)