Search results: Found 20

Listing 1 - 10 of 20 << page
of 2
>>
Sort by
MEMS Mirrors

Author:
ISBN: 9783038428671 9783038428688 Year: Pages: VI, 210 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2018-05-04 13:32:54
License:

Loading...
Export citation

Choose an application

Abstract

MEMS mirrors can steer, modulate and switch light, as well as control the wavefront for focusing or phase modulation. MEMS mirrors have found enormous commercial success in projectors, displays and fiberoptic communications. Micro-spectrometers based on MEMS mirrors are starting to appear in the consumer market. There are also many breakthroughs in applying MEMS mirrors for endoscopic imaging. Equally excitingly, a new wave of opportunities for MEMS mirrors is coming up, for example, micro-LiDAR for autonomous driving and robotics, optical cross connect (OXC) for cloud data centers, and optical scanners for virtual reality/augumented reality, just to name a few. Of course, there are a number of big challenges that researchers and engineers must overcome to fully utiltize MEMS mirrors’ potential: modeling and control are inherently complex due to the multiphysics, multi-DOF and nonlinear nature of the microactuators for MEMS mirrors; reliability is always a huge hurdle for commercilization; and the tradeoffs among the speed, aperture, and scan range are often overwhelming. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on: (1) novel designs, fabrication, control, and modeling of MEMS mirrors based on all kinds of actuation mechanisms; and (2) new developments of applying MEMS mirrors of any kind in consumer electronics, optical communications, industry, medicine, agriculture, space, or defense.

Piezoelectric MEMS

Authors: ---
ISBN: 9783038970057 9783038970064 Year: Pages: VIII, 168 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering
Added to DOAB on : 2018-07-10 12:55:10
License:

Loading...
Export citation

Choose an application

Abstract

Electromechanical transducers based on piezoelectric layers and thin films are continuously finding their way into micro-electromechanical systems (MEMS). Piezoelectric transducers feature a linear voltage response, no snap-in behavior and can provide both attractive and repulsive forces. This removes inherent physical limitations present in the commonly used electrostatic transducer approach, while maintaining beneficial properties such as low-power operation. In order to exploit the full potential of piezoelectric MEMS, interdisciplinary research efforts range from investigations of advanced piezoelectric materials over the design of novel piezoelectric MEMS sensor and actuator devices, to the integration of PiezoMEMS devices into full low-power systems. In this Special Issue, the current status of this exciting research field will be presented, covering a wide range of topics including, but not limited to:• Experimental and theoretical research on piezoelectric materials such as AlN, ScAlN, ZnO or PZT, PVDF with a strong focus on the application of MEMS devices.• Deposition and synthesis techniques for piezoelectric materials enabling integration of those materials into MEMS fabrication processes.• Modelling and simulation of piezoelectric MEMS devices and systems.• Piezoelectric MEMS resonators for measuring physical quantities such as mass, acceleration, yaw rate, pressure and viscosity or density of liquids.• Optical MEMS devices, such as scanning micro mirror devices and optical switches, based on piezoelectric MEMS.• Acoustic devices, such as SAW, BAW or FBARs and acoustic transducers, based on piezoelectric MEMS, such as microphones or loudspeakers.• Piezoelectric energy harvesting devices.• Specific packaging aspects of piezoelectric devices and systems.• Low and zero power systems, featuring low-power sensors combined with energy harvesting devices, at least one of which is based on piezoelectric MEMS.

Micromanipulation

Author:
ISBN: 9783038975038 9783038975045 Year: Pages: 200 DOI: 10.3390/books978-3-03897-504-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Mechanical Engineering
Added to DOAB on : 2019-01-10 10:09:02
License:

Loading...
Export citation

Choose an application

Abstract

Nowadays, we meet microsystems in a variety of devices used in modern life. They are used, for example, in medicine, biology, industry, home appliances, transport, and aerospace. One of the main problems in the technological development of microsystems is their actuation. Several solutions have been suggested, such as electrostatic, electrothermal, electromagnetic, or piezoelectric actuation, although a valid solution seems to be still out of our reach.Another crucial problem in designing, manufacturing, and operating microsystems for micromanipulation consists in the loss of some basic paradigms commonly used as a source of inspiration at the macroscale. The differences in designing at the two different scales may have either positive or negative effects. For example, an unthinkable structure in the day–life domain, as, for example, a long “cantilever” bridge over the Hudson river, would become possible after downscaling “everything” from road dimensions to the micro-world. Alternatively, a fantastic electric motor that works very well in our world, by virtue of the basic principles of electromagnetism, would become useless if scaled back to the micro cosmos.This book opens a small window on the world of research, presenting a group of papers that try to respond to the challenge of increasing the efficiency and functionality of modern microsystems. A final little section is also dedicated to the development of new teaching methods successfully adopted in some university courses.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

State-Of-The- Art Sensors Technology in France 2016

Authors: ---
ISBN: 9783038426523 9783038426530 Year: Pages: 218 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Analytical Chemistry
Added to DOAB on : 2018-01-16 09:42:38
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue aims to provide a comprehensive overview of state-of-the-art sensors technology in France. It includes research articles that consolidate our understanding of the state-of-the-art in this area and also four reviews on hot fields in sensor technology (nanomaterials, electronic tongue and optical fibre networks).

MEMS Accelerometers

Authors: --- ---
ISBN: 9783038974147 9783038974154 Year: Pages: 252 DOI: 10.3390/books978-3-03897-415-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.

Keywords

low-temperature co-fired ceramic (LTCC) --- capacitive accelerometer --- wireless --- process optimization --- performance characterization --- MEMS accelerometer --- mismatch of parasitic capacitance --- electrostatic stiffness --- high acceleration sensor --- piezoresistive effect --- MEMS --- micro machining --- turbulent kinetic energy dissipation rate --- probe --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- Taguchi method --- marine environmental monitoring --- accelerometer --- frequency --- acceleration --- heat convection --- motion analysis --- auto-encoder --- dance classification --- deep learning --- self-coaching --- wavelet packet --- classification of horse gaits --- MEMS sensors --- gait analysis --- rehabilitation assessment --- body sensor network --- MEMS accelerometer --- electromechanical delta-sigma --- built-in self-test --- in situ self-testing --- digital resonator --- accelerometer --- activity monitoring --- regularity of activity --- sleep time duration detection --- indoor positioning --- WiFi-RSSI radio map --- MEMS-IMU accelerometer --- zero-velocity update --- step detection --- stride length estimation --- field emission --- hybrid integrated --- vacuum microelectronic --- cathode tips array --- interface ASIC --- micro-electro-mechanical systems (MEMS) --- delaying mechanism --- safety and arming system --- accelerometer --- multi-axis sensing --- capacitive transduction --- inertial sensors --- three-axis accelerometer --- micromachining --- miniaturization --- stereo visual-inertial odometry --- fault tolerant --- hostile environment --- MEMS-IMU --- mode splitting --- Kerr noise --- angular-rate sensing --- whispering-gallery-mode --- optical microresonator --- three-axis acceleration sensor --- MEMS technology --- sensitivity --- L-shaped beam --- n/a

A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783731505839 Year: Volume: 64 Pages: X, 112 p. DOI: 10.5445/KSP/1000059741 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.

Optical MEMS

Authors: ---
ISBN: 9783039213030 9783039213047 Year: Pages: 172 DOI: 10.3390/books978-3-03921-304-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense.

Keywords

scanning micromirror --- electromagnetic actuator --- angle sensor --- flame retardant 4 (FR4) --- variable optical attenuator (VOA) --- wavelength dependent loss (WDL) --- polarization dependent loss (PDL) --- micro-electro-mechanical systems (MEMS) --- tunable fiber laser --- echelle grating --- DMD chip --- MEMS scanning micromirror --- fringe projection --- laser stripe scanning --- quality map --- large reflection variations --- 3D measurement --- laser stripe width --- vibration noise --- MLSSP --- MEMS scanning mirror --- wavefront sensing --- digital micromirror device --- ocular aberrations --- dual-mode liquid-crystal (LC) device --- infrared Fabry–Perot (FP) filtering --- LC micro-lenses controlled electrically --- spectrometer --- infrared --- digital micromirror device (DMD) --- signal-to-noise ratio (SNR) --- stray light --- programmable spectral filter --- digital micromirror device --- optical switch --- microscanner --- input shaping --- open-loop control --- quasistatic actuation --- residual oscillation --- usable scan range --- higher-order modes --- resonant MEMS scanner --- electrostatic --- parametric resonance --- NIR fluorescence --- intraoperative microscope --- 2D Lissajous --- fluorescence confocal --- metasurface --- metalens --- field of view (FOV) --- achromatic --- Huygens’ metalens --- bio-optical imaging --- optical coherence tomography --- confocal --- two-photon --- spectrometer --- MEMS mirror --- electrothermal bimorph --- Cu/W bimorph --- electrothermal actuation --- reliability --- n/a

MEMS Technology for Biomedical Imaging Applications

Authors: ---
ISBN: 9783039216048 9783039216055 Year: Pages: 218 DOI: 10.3390/books978-3-03921-605-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community.

Keywords

tilted microcoil --- electromagnetically-driven --- surface micromachining --- polyimide capillary --- MEMS --- ego-motion estimation --- indoor navigation --- monocular camera --- scale ambiguity --- wearable sensors --- photoacoustic --- microelectromechanical systems (MEMS) --- miniaturized microscope --- lead-free piezoelectric materials --- high frequency ultrasonic transducer --- needle-type --- high spatial resolution --- ultrahigh frequency ultrasonic transducer --- Si lens --- tight focus --- finite element simulation --- low noise amplifier (LNA) --- noise figure --- smart hydrogels --- bio-sensors --- chemo-sensor --- electrochemical sensors --- transduction techniques --- near-field microwave --- microwave resonator --- microwave remote sensing --- potentiometric sensor --- gold nanoparticles --- metal oxide field-effect transistor --- chemo-FET --- bio-FET --- photoacoustic imaging --- microelectromechanical systems (MEMS) --- MEMS scanning mirror --- micromachined US transducer --- microring resonator --- acoustic delay line --- MEMS mirror --- Lissajous scanning --- pseudo-resonant --- sensing --- imaging --- display --- MEMS actuators --- microendoscopy --- confocal --- two-photon --- wide-filed imaging --- photoacoustic --- fluorescence --- scanner --- capacitive micromachined ultrasonic transducer (CMUT) --- acoustics --- micromachining --- capacitive --- transducer --- modelling --- fabrication --- 3D Printing --- piezoelectric array --- ultrasonic transducer --- ultrasonic imaging --- micro-optics --- bioimaging --- microtechnology --- microelectromechanical systems (MEMS) --- in vitro --- in vivo --- cantilever waveguide --- electrostatic actuator --- non-resonating scanner --- optical scanner --- push-pull actuator --- rib waveguide --- n/a

Microlenses

ISBN: 9783038420507 9783038420507 Year: Pages: 160 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 08:40:45
License:

Loading...
Export citation

Choose an application

Abstract

The study and application of microscale lenses and lens arrays enjoys a long history. Advances in microfabrication technologies in the past few decades have enabled the design and fabrication of microlenses and microlens arrays through many different approaches. In recent years, there has been notably a host of exciting developments in the microlenses and microlens arrays, including tunable-focus ones, those fabricated on non-planar substrates and surfaces, and microlens arrays mimicking natural compound eyes, to name just a few. The developments in microlenses and microlens arrays have found profound applications in many engineering and biomedical fields, including but not limited to optical coherence tomography (OCT), endoscopy, photolithography, 3-dimensional imaging, optical communications, and lab on chips. This Special Issue aims to highlight the state of the art in the development of microlenses and microlens arrays; examples being fabrication technologies and optical characterizations. It also focuses on their applications when implemented in microoptical systems.

Listing 1 - 10 of 20 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (19)

KIT Scientific Publishing (1)


License

CC by-nc-nd (18)

CC by (1)

CC by-sa (1)


Language

english (20)


Year
From To Submit

2020 (1)

2019 (13)

2018 (4)

2017 (1)

2015 (1)