Search results: Found 4

Listing 1 - 4 of 4
Sort by
Neuroplasticity and Extracellular Proteolysis

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198511 Year: Pages: 151 DOI: 10.3389/978-2-88919-851-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Neuroplasticity refers to the ability of the Central Nervous System (CNS) to alter its structure and function in response to a variety of physiological and pathological processes such as development, cognition, injury or neurological diseases. Since more than four decades, studies on synaptic plasticity in the context of memory and learning attracted a remarkable interest. Soon after first seminal works on synaptic plasticity were published, research in this field was extended by studies on non-synaptic as wells as structural plasticity towards a goal to understand cellular and molecular determinants of cognition. Over the past two decades, yet two additional crucial players in neuroplastic phenomena started to be intensely investigated – glial cells and the extracellular matrix (ECM). Growing awareness that glial cells, especially astrocytes, are important regulators of synaptic functions gave rise to a novel concept of a tri-partite synapse. Also, over the last two decades, a growing body of evidence has accumulated that the extracellular matrix (ECM) in the brain is strongly involved in regulation of neurons, in particular, in synaptic plasticity. Thus, a concept of tetra-partite synapse was put forward by some neuroscientists. The cross-talk between neuron-glia-ECM system involves enzymatic degradation of proteins or peptides and amino acids occurring in each of these brain constituents by means of a variety of proteases. Importantly, it has been realized that proteases such as serine proteases and matrix metalloproteinases, not only accompany “robust” phenomena such as cell division, or development or neurodegnerative conditions but may play a very subtle signaling functions, particularly important in memory acquisition. Indeed, the repertoire of substrates for these enzymes covers a wide variety of proteins known to play important role in the neuroplastic phenomena (e.g. BDNF, TNF-a, ephrin systems, various cell adhesion molecules, etc.). In result, the role of metalloproteinases and such serine proteases as tissue plasminogen activator (tPA), neuropsin or neurotrypsin in synaptic plasticity as well as in learning and memory has been particularly well demonstrated. It needs to be emphasized, however, that in spite of a remarkable progress in this field, several basic questions regarding molecular and cellular mechanisms remain unanswered. Potential involvement of so many important players (various proteases and their substrates in neurons, glia and in ECM) points to an enormous potential for plasticity phenomena but makes also studies into underlying mechanisms particularly difficult. In the proposed Research Topic we provide both review of the current state of the art and present some original reports on specific aspects of the role of proteolysis in neuroplasticity phenomena. The present ebook starts with extensive reviews describing involvement of proteolysis not only in synaptic plasticity but also in regulating endogenous excitability and structural changes at the network, cellular and subcellular levels. Cross-talk between neuroplasticity and proteolysis is also emphasized in the context of development and in relation to various pathologies. Whereas in the first part of the present ebook, the major focus is on metalloproteinases, the successive articles address the role of neuropsin and thrombin. The Research Topic is concluded with a series of articles describing the components of extracellular matrix and adhesion proteins and their elaboration by mechanisms dependent directly or indirectly on proteolysis. We do hope that the present ebook will further stimulate the interest in the fascinating investigations into neuroplasticity-proteolysis cross-talk.

Wound Repair and Regeneration

Author:
ISBN: 9783038427674 9783038427681 Year: Pages: 302 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-03-26 15:46:58
License:

Loading...
Export citation

Choose an application

Abstract

Wounds are a largely unrecognized, spiraling epidemic that affect millions of people world-wide. They are complex and involve temporal and spatial involvement of many different cell types and tissue processes. Recent advances in our understanding of wound repair and regeneration, as well as the many novel and exciting approaches aimed at healing chronic/acute wounds and reducing scar formation, make this a pertinent time for a Special Issue aimed at overviewing this important field. The goal of this book is to provide a summary of the field, describe its impact, as well as introduce the recent advances in understanding the mechanisms that underpin wound healing and scar formation. The articles include in this book highlight new developments in therapeutic approaches for wound repair including the use of nanomedicine and biomaterials to deliver cells and/or drugs to promote healing. Cellular responses that underpin angiogenesis, inflammation, proliferation and remodeling, as well as advances in cytoskeletal interactions in keratinocytes and fibroblast cell functions. Wound remodeling and scar formation including the roles of growth factors, cytokines and stem cells are included.

Extracellular Matrix in Development and Disease

Author:
ISBN: 978303897570 / 9783038975717 Year: Pages: 356 DOI: 10.3390/books978-3-03897-571-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2019-02-21 09:43:25
License:

Loading...
Export citation

Choose an application

Abstract

The extracellular matrix in development and disease deals with the molecular and cellular aspects of development and disease. Cells exist in three-dimensional scaffolding called the extracellular matrix. The matrix holds together the millions of cells that make up our blood vessels, organs, skin, and all tissues of the body. The matrix serves as a reservoir of signaling molecules as well. In bacterial cultures, biofilms form as an extracellular matrix and play essential roles in disease and drug resistance. Topics such as matrix structure and function, cell attachment and cell surface proteins mediating cell-matrix interactions, synthesis, regulation, composition, structure, assembly, remodeling, and function of the matrix are included. A common thread uniting the topics is the essential nature that the matrix plays in normal development and pathophysiology. Providing new knowledge will lead us to improved diagnostics, the preventions of disease progression, and therapeutic strategies for the repair and regeneration of tissues. Topics such as the extracellular matrix in hereditary diseases, reproduction, cancer, muscle, and tissue engineering applications, and diverse roles for integrins, are included in this collection.

Therapeutic Strategies to Spinal Cord Injury

Author:
ISBN: 9783038974062 9783038974079 Year: Pages: 238 DOI: 10.3390/books978-3-03897-407-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2018-12-12 10:33:09
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.This Special Issue gathers eight research articles covering a broad range of strategies on how to combat spinal cord injuries, from searching for therapeutic target molecules, tackling inflammatory reactions, utilizing cell therapy or cell-based products, combined strategies for axonal plasticity assessment, and prevention of post-surgical epidural adhesions. Moreover, four reviews cover recent findings about the role of stress-activated protein kinases in SCI; progress in stem cell therapies; the mechanisms and benefits of activity-based physical rehabilitation therapies with adjuvant testosterone; and, finally, translational regenerative therapies for chronic spinal cord injury.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)

Frontiers Media SA (1)


License

CC by-nc-nd (3)

CC by (1)


Language

english (4)


Year
From To Submit

2019 (1)

2018 (2)

2016 (1)