Search results: Found 3

Listing 1 - 3 of 3
Sort by
Microwave Indices from Active and Passive Sensors for Remote Sensing Applications

Authors: ---
ISBN: 9783038978206 / 9783038978213 Year: Pages: 224 DOI: 10.3390/books978-3-03897-821-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Geography --- Science (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Past research has comprehensively assessed the capabilities of satellite sensors operating at microwave frequencies, both active (SAR, scatterometers) and passive (radiometers), for the remote sensing of Earth’s surface. Besides brightness temperature and backscattering coefficient, microwave indices, defined as a combination of data collected at different frequencies and polarizations, revealed a good sensitivity to hydrological cycle parameters such as surface soil moisture, vegetation water content, and snow depth and its water equivalent. The differences between microwave backscattering and emission at more frequencies and polarizations have been well established in relation to these parameters, enabling operational retrieval algorithms based on microwave indices to be developed. This Special Issue aims at providing an overview of microwave signal capabilities in estimating the main land parameters of the hydrological cycle, e.g., soil moisture, vegetation water content, and snow water equivalent, on both local and global scales, with a particular focus on the applications of microwave indices.

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972709 Year: Volume: 1 Pages: 404 DOI: 10.3390/books978-3-03897-271-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Advances in Quantitative Remote Sensing in China – In Memory of Prof. Xiaowen Li

Authors: --- ---
ISBN: 9783038972761 Year: Volume: 2 Pages: 404 DOI: 10.3390/books978-3-03897-277-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Quantitative land remote sensing has recently advanced dramatically, particularly in China. It has been largely driven by vast governmental investment, the availability of a huge amount of Chinese satellite data, geospatial information requirements for addressing pressing environmental issues and other societal benefits. Many individuals have also fostered and made great contributions to its development, and Prof. Xiaowen Li was one of these leading figures. This book is published in memory of Prof. Li. The papers collected in this book cover topics from surface reflectance simulation, inversion algorithm and estimation of variables, to applications in optical, thermal, Lidar and microwave remote sensing. The wide range of variables include directional reflectance, chlorophyll fluorescence, aerosol optical depth, incident solar radiation, albedo, surface temperature, upward longwave radiation, leaf area index, fractional vegetation cover, forest biomass, precipitation, evapotranspiration, freeze/thaw snow cover, vegetation productivity, phenology and biodiversity indicators. They clearly reflect the current level of research in this area. This book constitutes an excellent reference suitable for upper-level undergraduate students, graduate students and professionals in remote sensing.

Keywords

evapotranspiration --- Northeast China --- MS–PT algorithm --- spatial-temporal variations --- controlling factors --- potential evapotranspiration --- vegetation remote sensing --- reflectance model --- spectra --- leaf --- copper --- PROSPECT --- leaf area density --- terrestrial LiDAR --- tree canopy --- vertical structure --- voxel --- spatial representativeness --- heterogeneity --- validation --- land-surface temperature products (LSTs) --- observations --- HiWATER --- remote sensing --- spatiotemporal representative --- cost-efficient, sampling design --- heterogeneity --- validation --- FY-3C/MERSI --- GLASS --- Land surface temperature --- Land surface emissivity --- GPP --- SIF --- MuSyQ-GPP algorithm --- BEPS --- vegetation phenology --- Tibetan Plateau --- MODIS --- NDVI --- start of growing season (SOS) --- end of growing season (EOS) --- GLASS LAI time series --- forest disturbance --- disturbance index --- latent heat --- machine learning algorithms --- plant functional type --- high-resolution freeze/thaw --- AMSR2 --- MODIS --- LAI --- ZY-3 MUX --- GF-1 WFV --- HJ-1 CCD --- maize --- PROSPECT-5B+SAILH (PROSAIL) model --- spatial heterogeneity --- variability --- evapotranspiration --- land surface variables --- probability density function --- HiWATER --- spectral --- albedometer --- interference filter --- photoelectric detector --- validation --- land surface albedo --- multi-scale validation --- rugged terrain --- MRT-based model --- MCD43A3 C6 --- precipitation --- statistics methods --- China --- Tibetan Plateau --- South China’s --- drought --- SPI --- TMI data --- crop-growing regions --- downward shortwave radiation --- machine learning --- gradient boosting regression tree --- AVHRR --- CMA --- BRDF --- aerosol --- MODIS --- sunphotometer --- arid/semiarid --- solar-induced chlorophyll fluorescence --- fluorescence quantum efficiency in dark-adapted conditions (FQE) --- SCOPE --- Fraunhofer Line Discrimination (FLD) --- gross primary productivity (GPP) --- longwave upwelling radiation (LWUP) --- Visible Infrared Imaging Radiometer Suite (VIIRS) --- surface radiation budget --- hybrid method --- remote sensing --- leaf age --- leaf spectral properties --- leaf area index --- Cunninghamia --- Chinese fir --- canopy reflectance --- NIR --- EVI2 --- geometric optical radiative transfer (GORT) model --- land surface albedo --- snow-free albedo --- rugged terrain --- topographic effects --- black-sky albedo (BSA) --- GPP --- NPP --- MODIS --- validation --- phenology --- RADARSAT-2 --- rice --- Synthetic Aperture Radar (SAR) --- decision tree --- forest canopy height --- aboveground biomass --- ICESat GLAS --- Landsat --- random forest model --- anisotropic reflectance --- BRDF --- rugged terrain --- solo slope --- composite slope --- surface solar irradiance --- geostationary satellite --- polar orbiting satellite --- LUT method --- SURFRAD --- downward shortwave radiation --- daily average value --- Antarctica --- sinusoidal method --- cloud fraction --- interpolation --- boreal forest --- GPP --- spatiotemporal distribution and variation --- meteorological factors --- phenological parameters --- multisource data fusion --- aerosol retrieval --- urban scale --- vegetation dust-retention --- multiple ecological factors --- geographical detector model --- snow cover --- passive microwave --- FY-3C/MWRI --- algorithmic assessment --- China --- land surface temperature --- satellite observations --- flux measurements --- latitudinal pattern --- land cover change --- fractional vegetation cover (FVC) --- multi-data set --- northern China --- spatio-temporal --- inter-annual variation --- uncertainty --- standard error of the mean --- downscaling --- GPP --- spatial heterogeneity --- remote sensing --- subpixel information --- LiDAR --- point cloud --- leaf --- gap fraction --- 3D reconstruction --- biodiversity --- remote sensing --- species richness --- metric comparison --- metric integration --- leaf area index --- MODIS products --- Landsat --- high resolution --- homogeneous and pure pixel filter --- pixel unmixing --- vertical vegetation stratification --- gross primary production (GPP) --- light use efficiency --- dense forest --- MODIS --- VPM --- temperature profiles --- humidity profiles --- n/a --- geometric-optical model --- thermal radiation directionality --- quantitative remote sensing inversion --- scale effects --- comprehensive field experiment

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (3)


License

CC by-nc-nd (3)


Language

eng (3)


Year
From To Submit

2019 (3)