Search results: Found 106

Listing 1 - 10 of 106 << page
of 11
>>
Sort by
Analytical Heat Transfer

Authors: ---
ISBN: 9781439861967 Year: Pages: 326 Language: English
Publisher: Taylor & Francis
Subject: Agriculture (General)
Added to DOAB on : 2020-07-29 23:58:56
License:

Loading...
Export citation

Choose an application

Abstract

Developed from the author’s 30 years of teaching a graduate-level intermediate heat transfer course, Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. Suitable for entry-level graduate students, the book fills the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses. The author places emphasis on modeling and solving engineering heat transfer problems analytically, rather than simply applying the equations and correlations for engineering problem calculations. He describes many well-known analytical methods and their solutions, such as Bessel functions, separation of variables, similarity method, integral method, and matrix inversion method. He also presents step-by-step mathematical formula derivations, analytical solution procedures, and numerous demonstration examples of heat transfer applications. By providing a strong analytical background, the text enables students to tackle complex engineering heat transfer problems encountered in practice. This analytical knowledge also helps them to read and understand heat transfer-related research papers.

Keywords

Heat Transfer

Heat Transfer Processes in Oscillatory Flow Conditions

Author:
ISBN: 9783038427094 9783038427100 Year: Pages: VI, 172 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Heat
Added to DOAB on : 2018-04-27 16:01:54
License:

Loading...
Export citation

Choose an application

Abstract

Heat exchange processes in steady flows have been studied extensively over the last two hundred years, and are now a part of undergraduate syllabi in most engineering courses. However, heat transfer processes in oscillatory flow conditions are still not very well understood. Their importance is well recognized in applications including Stirling machines, thermoacoustic engines, and refrigerators or pulsed-tube coolers in cryogenics. Additionally, the enhancement of heat transfer by using oscillatory, and, in some cases, pulsating flows is important in many areas of mechanical and chemical engineering for the intensification of heat transfer processes and possible miniaturization of heat exchangers of the future.This Special Issue was intended as a dissemination platform for researchers working in the field to have an opportunity to consolidate recent advances in this important research area. All types of research approaches were invited, including experimental, theoretical, computational fluid dynamics (CFD), and their combinations, while the approaches could be either of a fundamental or applied nature. The guest editor and the editorial team of Applied Sciences hope that the readership will find the selection of ten articles presented here a useful contribution to the emerging field of heat transfer processes in oscillatory flow conditions.

Flow and Heat or Mass Transfer in the Chemical Process Industry

Authors: ---
ISBN: 9783038972389 9783038972396 Year: Pages: 214 DOI: 10.3390/books978-3-03897-239-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-09-28 12:14:25
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[Flow through process equipment in a chemical or manufacturing plant (e.g., heat exchangers, reactors, catalyst regeneration units, separation units, pumps, pipes, smoke stacks, etc.) is usually coupled with heat and/or mass transfer. Rigorous investigation of this coupling of momentum, heat, and mass transfer is not only important for the practice of designing process equipment, but is also important for improving our overall theoretical understanding of transfer phenomena. While generalizations and empiricisms, like the concept of the heat transfer coefficient or the widely used Reynolds analogy in turbulence, or the use of empirical transfer equations for flow in separation towers and reactors packed with porous media, have served practical needs in prior decades, such empiricisms can now be revised or altogether replaced by bringing modern experimental and computational tools to bear in understanding the interplay between flow and transfer. The patterns of flow play a critical role in enhancing the transfer of heat and mass. Typical examples are the coherent flow structures in turbulent boundary layers, which are responsible for turbulent transfer and mixing in a heat exchanger and for dispersion from a smoke stack, and the flow patterns that are a function of the configuration of a porous medium and are responsible for transfer in a fixed bed reactor or a fluid bed regenerator unit. The goal of this Special Issue is to be a forum for recent developments in theory, state-of-the-art experiments and computations on the interactions between flow and transfer in single and multi-phase flow, and from small scales to large scales, which can be important for the design of equipment in a chemical processing plant.]

Recent Developments of Nanofluids

Author:
ISBN: 9783038428336 9783038428343 Year: Pages: VIII, 150 Language: Englisch
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mathematics --- Physics (General) --- Chemistry (General)
Added to DOAB on : 2018-08-24 15:50:37
License:

Loading...
Export citation

Choose an application

Abstract

Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.

Divertor Development for a Future Fusion Power Plant

Author:
Book Series: Schriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie ISSN: 21929963 ISBN: 9783866447387 Year: Volume: 1 Pages: VI, 136 p. DOI: 10.5445/KSP/1000024270 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:00
License:

Loading...
Export citation

Choose an application

Abstract

Nuclear fusion is considered as a future source of sustainable energy supply. Since the H-mode discovery in ASDEX experiment ""Divertor I"" in 1982, the divertor has been an integral part of all modern tokamaks and stellarators. The major goal of this thesis is to develop a feasible divertor design for a fusion power plant to be built after ITER. The thesis describes the approach in the conceptual development of a helium-cooled divertor and the methods of verification and validation of the design.

Optimization of Heat and Mass Exchange

Authors: --- ---
ISBN: 9783039287420 / 9783039287437 Year: Pages: 182 DOI: 10.3390/books978-3-03928-743-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Processes operates on the basis of a rigorous peer-review with a single-blind assessment and at least two independent reviewers, thereby ensuring a high quality final product. I would like to thank our reviewers, for providing the authors with constructive comments, and Editorial Board, for their professional advice that led to the final decision. I am sure that, in coming years, readers of this Special Issue will find the scientific manuscripts interesting and beneficial to their research.

Urban Overheating - Progress on Mitigation Science and Engineering Applications

Authors: ---
ISBN: 9783038976363 Year: Pages: 350 DOI: 10.3390/books978-3-03897-637-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Meteorology and Climatology --- Science (General)
Added to DOAB on : 2019-04-05 10:34:31
License:

Loading...
Export citation

Choose an application

Abstract

The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.

Keywords

heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut

Engineering Fluid Dynamics

Author:
ISBN: 9783038426684 9783038426691 Year: Pages: 210 DOI: 10.3390/books978-3-03842-669-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemical Engineering
Added to DOAB on : 2018-01-31 13:09:30
License:

Loading...
Export citation

Choose an application

Abstract

This book contains the successful submissions to a Special Issue of Energies on the subject area of “Engineering Fluid Dynamics”. The topic of engineering fluid dynamics includes both experimental as well as computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed both original research articles as well as review articles. After one year, 22 papers were submitted and 12 were accepted for publication. The average processing time was 65.2 days. The authors had the following geographical distribution: China (four); Italy (two); Korea (one); Germany (one); UK (one); Ireland (one); Australia (one); Sweden (one); Japan (one); Spain (one); Norway (one).Papers covered topics such as heat transfer in shell and helically coiled tube heat exchangers, the multiphase modeling of sprays, flashing flows, as well as mixing in a bubbling fluidized bed. Two papers related to heating ventilation and air condition (HVAC) are included, namely evaporation and condensation in the underfloor space of detached houses and air distribution in a railway vehicle. Three papers dealt with various aspects of pumps and turbines: a performance prediction method for pumps as turbines; noise radiation in a centrifugal pump; periodic fluctuations in energy efficiency in centrifugal pumps; and study of a high-pressure external gear pump. One paper used both laser doppler velocimetry (LDV) and CFD in the study of flow behind a semi-circular step cylinder. Finally, a paper investigated the influence of the equivalence ratio (ER) and feedstock particle size on birch wood gasification.

Advanced Energy Storage Technologies and Their Applications (AESA)

Authors: --- ---
ISBN: 9783038425441 9783038425458 Year: Pages: 430 DOI: 10.3390/books978-3-03842-545-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-02-26 15:40:34
License:

Loading...
Export citation

Choose an application

Abstract

The depletion of fossil fuels, the increase of energy demands, and the concerns over climate change are the major driving forces for the development of renewable energy, such as solar energy and wind power. However, the intermittency of renewable energy has hindered the deployment of large-scale intermittent renewable energy, which, therefore, has necessitated the development of advanced large-scale energy storage technologies. The use of large-scale energy storage can effectively improve the efficiency of energy resource utilization, and increase the use of variable renewable resources, the energy access, and the end-use sector electrification (e.g., electrification of transport sector).This Special Issue will provide a platform for presenting the latest research results on the technology development of large-scale energy storage. We welcome research papers about theoretical, methodological and empirical studies, as well as review papers, that provide critical overview on the state of the art of technologies. This special issue is open to all types of energy, such as thermal energy, mechanical energy, electrical energy and chemical energy, using different types of systems, such as phase change materials, batteries, supercapacitors, fuel cells, compressed air, etc., which are applicable to various types of applications, such as heat and power generation, electrical/hybrid transportation, etc.

Functional Materials Based on Metal Hydrides

Authors: --- --- ---
ISBN: 9783038972822 9783038972839 Year: Pages: 180 DOI: 10.3390/books978-3-03897-283-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General)
Added to DOAB on : 2018-10-18 10:44:38
License:

Loading...
Export citation

Choose an application

Abstract

Our extreme and growing energy consumption, based on fossil fuels, has significantly increased the levels of carbon dioxide in the atmosphere, which may lead to global and irreversible climate changes. We have plenty of renewable energy, e.g., sun and wind, but the fluctuations over time and geography call for a range of new ideas and, possibly, novel technologies. The most difficult challenge appears to be the development of the efficient and reliable storage of renewable energy. Hydrogen has long been considered as a potential means of energy storage; however, storage of hydrogen is also challenging. Therefore, a wide range of hydrogen-containing materials, with energy-related functions, has been discovered over the past few decades. The chemistry of hydrogen is very diverse, and so also are the new hydrides that have been discovered, not only in terms of structure and composition but also in terms of their properties. This has led to a wide range of new possible applications of metal hydrides that permeate beyond solid-state hydrogen storage. A variety of new hydrides, proposed as battery materials, has been discovered. These can exploit properties as fast ion conductors or as conversion-type electrodes with much higher potential energy capacities, compared to materials currently used in commercial batteries. Solar heat storage is also an area of great potential for metal hydrides, in principle offering orders of magnitude better storage performance than phase change materials. Recently, hydrides with optical and superconducting properties have also been investigated. This Special Issue of Inorganics, entitled “Functional Materials Based on Metal Hydrides”, is dedicated to the full range of emerging electronic, photonic, and energy-related, inorganic, hydrogen-containing materials.

Listing 1 - 10 of 106 << page
of 11
>>
Sort by
Narrow your search