Search results: Found 7

Listing 1 - 7 of 7
Sort by
Explizit korrelierte quasirelativistische Wellenfunktionen

Author:
ISBN: 9783866443990 Year: Pages: IV, 78 p. DOI: 10.5445/KSP/1000012165 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Chemistry (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

Die Arbeit befasst sich mit der Kombination von explizit korrelierten Wellenfunktionen mit quasirelativistischen Hamilton-Operatoren. Die relativistische MP2-R12-Methode wurde entwickelt und effizient implementiert, um molekulare Systeme behandeln zu können. Es werden der skalare DKH- und Pauli-Operator, und zweikomponentige Spin-Bahn-ECPs behandelt. Der Basissatzfehler wird durch die R12-Terme drastisch reduziert, relativistische Effekte werden konsistent in die Störentwicklung einbezogen.

Methods in Computational Biology

Authors: ---
ISBN: 9783039211630 / 9783039211647 Year: Pages: 214 DOI: 10.3390/books978-3-03921-164-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections:•Reviews of Computational Methods•Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels•The Interface of Biotic and Abiotic Processes•Processing of Large Data Sets for Enhanced Analysis•Parameter Optimization and Measurement

Advances in Groundwater Flow and Solute Transport: Pushing the Hidden Boundary

Authors: --- ---
ISBN: 9783039210749 / 9783039210756 Year: Pages: 196 DOI: 10.3390/books978-3-03921-075-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

In recent decades, the study of groundwater flow and solute transport has advanced into new territories that are beyond conventional theories, such as Darcy’s law and Fick’s law. The studied media have changed from permeable porous and fractured ones to much less permeable ones, such as clay and shale. The studied pore sizes have also changed from millimetres to micro-meters or even nano-meters. The objective of this Special Issue is to report recent advances in groundwater flow and solute transport that push the knowledge boundary into new territories which include, but are not limited to, flow and transport in sloping aquifer/hillslopes, coupled unsaturated and saturated flow, coupled aquifer-vertical/horizontal/slant well flow, interaction of aquifer with connected and disconnected rivers, non-Darcian flow, anomalous transport beyond the Fickian scheme, and flow and transport in extremely small pore spaces such as shale and tight sandstones. Contributions focusing on innovative experimental, numerical, and analytical methods for understanding unconventional problems, such as the above-listed ones, are encouraged, and contributions addressing flow and transport at interfaces of different media and crossing multiple temporal and spatial scales are of great value

Permanent Magnet Synchronous Machines

Author:
ISBN: 9783039213504 / 9783039213511 Year: Pages: 282 DOI: 10.3390/books978-3-03921-351-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.

Keywords

PMSM (permanent magnet synchronous motor) --- DB-DTFC (deadbeat-direct torque and flux control) --- torque control --- stability --- permanent-magnet machine --- brushless machine --- Vernier machine --- flux switching machine --- multiphase machine --- outer rotor --- electric vehicle --- interior permanent magnet synchronous machines --- magnetic reluctance network --- brushless dc motor --- phase-advanced method --- winding inductance --- sub-fractional slot-concentrated winding --- field weakening --- periodic timer interrupt --- Brushless DC motors --- current ripples --- current spikes --- modeling --- back electromotive force --- R-C filter --- cogging torque --- permanent magnet synchronous generator --- small wind turbines --- finite element method --- renewable energy --- energy conversion --- finite element analysis --- pulse width modulation --- permanent magnet synchronous generator --- wind generator --- MPC --- PMSM --- vector control --- speed tracking --- brushless DC (BLDC) motor --- sensorless motor --- commutation error compensation --- free-wheeling period --- permanent magnet synchronous motor (PMSM) --- sliding mode observer (SMO) --- parameter perturbation --- predictive current control (PCC) --- digital simulation --- motor drives --- interior permanent-magnet machines --- finite-element analysis --- modeling --- automotive applications --- electric vehicle (EV) --- hybrid electric vehicle (HEV) --- mathematical model --- saturation --- coils --- design tools --- energy efficiency --- linear generator --- power control --- stator --- wave power --- permanent magnet synchronous generator --- electrical machine design --- permanent magnet material --- bulk electric system --- condition monitoring --- electrical signature analysis --- fault diagnosis --- predictive maintenance --- synchronous generator --- permanent magnet synchronous machine (PMSM) --- flying start --- sensorless control --- permanent magnet synchronous generator --- permanent magnet synchronous motor --- electric propulsion systems --- renewable energy --- energy conversion

Smart Sensors for Structural Health Monitoring

Authors: --- ---
ISBN: 9783039217588 / 9783039217595 Year: Pages: 342 DOI: 10.3390/books978-3-03921-759-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Smart sensors are technologies designed to facilitate the monitoring operations. For instance, power consumption can be minimized through on-board processing and smart interrogation algorithms, and state detection enhanced through collaboration between sensor nodes. Applied to structural health monitoring, smart sensors are key enablers of sparse and dense sensor networks capable of monitoring full-scale structures and components. They are also critical in empowering operators with decision making capabilities. The objective of this Special Issue is to generate discussions on the latest advances in research on smart sensing technologies for structural health monitoring applications, with a focus on decision-enabling systems. This Special Issue covers a wide range of related topics such as innovative sensors and sensing technologies for crack, displacement, and sudden event monitoring, sensor optimization, and novel sensor data processing algorithms for damage and defect detection, operational modal analysis, and system identification of a wide variety of structures (bridges, transmission line towers, high-speed trains, masonry light houses, etc.).

Keywords

optical crack growth sensor --- digital sampling moiré --- 2D crack growth --- calibration --- concrete crack --- feature extraction --- mapping construction --- fuzzy classification --- rotary ultrasonic array --- bending stiffness --- damage identification --- environmental noise --- bridge --- test vehicle --- structural impact monitoring --- sensors distribution optimization --- NSGA-II --- energy analysis of wavelet band --- principal component analysis --- transmission tower --- settlement --- wind force --- acceleration --- modal frequencies --- sudden event monitoring --- wireless smart sensors --- demand-based nodes --- event-triggered sensing --- data fusion --- patch antenna --- sensor --- structural health monitoring --- crack identification --- resonant frequency --- damage identification --- sensor optimization --- Virtual Distortion Method (VDM) --- Particle Swarm Optimization (PSO) algorithm --- sensitivity --- structural health monitoring --- piezoelectric wafer active sensors --- active sensing --- passive sensing --- damage detection --- acoustic emission --- uniaxial stress measurement --- structural steel members --- amplitude spectrum --- phase spectrum --- shear-wave birefringence --- acoustoelastic effect --- damage detection --- smartphones --- steel frame --- shaking table tests --- wavelet packet decomposition --- low-velocity impacts --- strain wave --- impactor stiffness --- data processing --- feature selection --- impact identification --- crack --- strain --- distributed dense sensor network --- structural health monitoring --- fibre bundle --- reflective optical sensor --- tip clearance --- turbine --- aero engine --- principal component analysis --- space window --- time window --- damage detection --- length effect --- stress detection --- electromagnetic oscillation --- steel strand --- concrete structures --- SHM --- stretching method --- model updating --- displacement sensor --- helical antenna --- resonant frequency --- perturbation theory --- normal mode --- wheel minor defect --- high-speed train --- online wayside detection --- Bayesian blind source separation --- FBG sensor array

Innovation Issues in Water, Agriculture and Food

Authors: ---
ISBN: 9783039211654 / 9783039211661 Year: Pages: 406 DOI: 10.3390/books978-3-03921-166-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Agriculture (General) --- Environmental Sciences
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

In a worldwide context of ever-growing competition for water and land, climate change, droughts and man-made water scarcity, and less-participatory water governance, agriculture faces the great challenge of producing enough food for a continually increasing population. In this line, this book provides a broad overview of innovation issues in the complex water–agriculture–food nexus, thus also relative to their interconnections and dependences. Issues refer to different spatial scales, from the field or the farm to the irrigation system or the river basin. Multidisciplinary approaches are used when analyzing the relationships between water, agriculture, and food security. The covered issues are quite diverse and include: innovation in crop evapotranspiration, crop coefficients and modeling; updates in research relative to crop water use and saving; irrigation scheduling and systems design; simulation models to support water and agricultural decisions; issues to cope with water scarcity and climate change; advances in water resource quality and sustainable uses; new tools for mapping and use of remote sensing information; and fostering a participative and inclusive governance of water for food security and population welfare. This book brings together a variety of contributions by leading international experts, professionals, and scholars in those diverse fields. It represents a major synthesis and state-of-the-art on various subjects, thus providing a valuable and updated resource for all researchers, professionals, policymakers, and post-graduate students interested in the complex world of the water–agriculture–food nexus.

Keywords

drought classes --- Standardized Precipitation and Evapotranspiration Index (SPEI) --- Standardized Precipitation Index (SPI) --- North Atlantic Oscillation (NAO) --- log-linear modeling --- persistence --- surface irrigation modelling --- precise land levelling --- irrigation systems design --- beneficial water use --- decision support systems (DSS) --- inflow rates --- cut-off time --- crop water requirements --- latent heat flux --- remote sensing --- olive orchard --- spatial variability --- agriculture --- impact --- measures --- nitrogen --- Sensitive Zones --- Tagus River Basin --- Vulnerable Zones --- basal crop coefficients --- crop coefficient curves --- crop transpiration --- Kcb from ground cover --- SIMDualKc model --- soil evaporation --- soil moisture --- soil temperature --- soil nutrient --- crop yield --- Corn --- Black soil --- deficit irrigation --- Fiesta grapes --- drip irrigation --- dried on the vine --- sustained deficit irrigation --- regulated deficit irrigation --- water–energy–food nexus --- policy-making --- stakeholder engagement --- fuzzy cognitive maps --- Spain --- Andalusia --- calibration --- irrigation district --- evapotranspiration --- crop growth --- validation --- Lycopersicon esculentum Mill. --- crop transpiration --- soil evaporation --- drip and basin irrigation --- deficit irrigation --- reform --- Participatory Irrigation Management --- Transfer --- water users association --- biomass --- crop transpiration --- direct forcing --- leaf area index --- soil evaporation --- soil temperature --- soil water storage depletion --- root growth --- maize yield --- semi-arid region --- actual evapotranspiration --- Pampa biome --- eddy covariance --- evaporative fraction --- hysteresis loops --- dry drainage system --- water and salt balance --- groundwater --- evaporation --- salinity --- irrigation scheduling --- wheat --- soil water balance --- new technologies --- smartphone application --- reference evapotranspiration --- local advection --- aridity effects --- satellite observations --- Evapotranspiration --- Irrigation --- Density coefficient --- Dual crop coefficients --- Row crops --- water and land management --- water users’ organization --- water balance --- supply–demand balance model --- organizational analysis --- participatory management --- pressurized irrigation systems --- on-demand operation --- perturbation --- unsteady flow --- hydrant risk indicator --- relative pressure exceedance --- agricultural intensification --- DPSIR --- nitrogen --- pressures --- policies --- surface water pollution --- water-agriculture-food nexus --- crop water use and evapotranspiration --- irrigation scheduling --- design of irrigation systems --- simulation models --- droughts --- irrigation water governance --- economic and environmental issues

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 / 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)

KIT Scientific Publishing (1)


License

CC by-nc-nd (7)


Language

eng (6)

german (1)


Year
From To Submit

2019 (6)

2009 (1)