Search results: Found 5

Listing 1 - 5 of 5
Sort by
Obesity-induced inflammation and insulin resistance

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194285 Year: Pages: 120 DOI: 10.3389/978-2-88919-428-5 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Immune response and metabolic regulation are highly integrated and this interface maintains a central homeostatic system, dysfunction of which can cause obesity-associated metabolic disorder such as type 2 diabetes, fatty liver disease and cardiovascular disease. Insulin resistance is an underlying basis for the pathogenesis of these metabolic diseases. Overnutrition or obesity activates the innate immune system with subsequent recruitment of immune cells such as macrophages and T cells, which contributes to the development of insulin resistance. In particular, a significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs). ATMs are a prominent source of proinflammatory cytokines, such as TNF-a and IL-6, that can block insulin action in adipose tissue, skeletal muscle, and liver autocrine/paracrine signaling and cause systemic insulin resistance via endocrine signaling, providing a potential link between inflammation and insulin resistance. All articles in this topic highlight the interconnection between obesity, inflammation, and insulin resistance in all its diversity to the mechanisms of obesity-induced inflammation and role of immune system in the pathogenesis of insulin resistance and diabetes.

The Cognition of Sequences

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453986 Year: Pages: 132 DOI: 10.3389/978-2-88945-398-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Psychology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

It is impossible to perceive the innumerable stimuli impinging on our senses, all at once. Out of the myriad stimuli, external and internal, a few are selected for further processing; and even among these, we try to put each in some sort of relation with the others, to be able to make some sense about them all. Time, of course, is an elementary dimension we use to organize our experiences. Thus, the perception of sequences is basic to human cognition. Nevertheless, research addressing sequences is rather sparse. Partly, this is due to difficulty in designing experiments in this area due to huge individual differences. Then, there is the assumption that temporal order has more to do with memory than perception. Another problem is that sequences seem endemic to the auditory world. So much so that some researchers have suggested that sound provides the ‘auditory scaffolding’ for sequencing behavior. Little wonder that research studies addressing sequences in modalities other than audition are extremely rare.This research topic aimed to gather a holistic picture of sequencing behaviour among humans by collecting snapshots of the current research on the topic of sequencing. We particularly sought contributions which addressed sequences beyond the auditory modality. The single unifying criteria for these diverse contributions was that they shed new light on previously unexplored empirical relationships and/or provoked new lines of research with incisive ideas regarding sequencing behavior. Seasoned researchers contributed their views on perception, memory, and production of sequences.

Macromolecular Structure Underlying Recognition in Innate Immunity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455270 Year: Pages: 151 DOI: 10.3389/978-2-88945-527-0 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Immune molecules have evolved to distinguish “self “molecules from “non-self”, “altered self” and “danger” molecules. Recognition is mediated via interactions between pattern recognition receptor molecules (PPRs) and their ligands, which include hydrophobic and electrostatic interactions between amino acid residues on the PPRs and uncharged or charged groups on amino acid residues, sugar rings or DNA/RNA molecules. Recognition in innate immunity range from cases (C1q, mannin-binding protein etc) where recognition is orchestrated by interaction between many ligands with one receptor molecule, and density of interaction is necessary for strong specific recognition, distinct from weak non-specific binding, and cases such as TLRs and NLRs where recognition involves complexation of single receptor and ligand, followed by oligomerisation of the receptor molecule. The majority of PPR molecules bind and recognise a wide variety of ligands, e.g TLR4 recognises LPS (gram negative bacteria), Lipotechoic acid (gram positive bacteria), heat shock protein hsp60, respiratory syncytial virus fusion protein etc, molecules that are structurally dissimilar to each other. This indicates considerable flexibility in their binding domains (amino acid residue variations) and modes (hydrophobic and charged, direct or mediated via an adaptor molecule). However, in many cases there is a dearth of structural and molecular data available, required to delineate the mechanism of ligand binding underlining recognition in pathogen receptors in innate immunity. Insights into requirements of conformation, charge, surface etc in the recognition and function of innate immunity receptors and their activation pathways, based on current data can suggest valuable avenues for future work.

Glycan Diversity in Fungi, Bacteria and Sea Organisms

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199426 Year: Pages: 85 DOI: 10.3389/978-2-88919-942-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Internal medicine
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The cell surface of fungi, bacteria and sea organisms is highly glycosylated. These glycans are oligo- or polysaccharide molecules that can be secreted or attached to protein or lipids forming glycoconjugates. They present extraordinary structural diversity that could explain their involvement in many fundamental cellular processes, including growth, differentiation and morphogenesis. Considerable advances have been made on the structural elucidation of these glycans. Their primary structures were determined based on a combination of mass spectrometry and NMR spectroscopy techniques. The combination of these sensitive and powerful techniques has allowed us to increase our structural knowledge of a wide variety of glycans expressed by different fungi, bacteria and sea organisms.

Pattern recognition receptors and cancer

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196746 Year: Pages: 201 DOI: 10.3389/978-2-88919-674-6 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

The group of pattern recognition receptors (PRRs) includes families of Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin receptors (CLRs), RIG-I-like receptors (RLRs), and AIM-2-like receptors (ALRs). Conceptually, receptors constituting these families are united by two general features. Firstly, they directly recognize common antigen determinants of virtually all classes of pathogens (so-called pathogen-associated molecular patterns, or simply PAMPs) and initiate immune response against them via specific intracellular signaling pathways. Secondly, they recognize endogenous ligands (since they are usually released during cell stress, they are called damage-associated molecular patterns, DAMPs), and, hence, PRR-mediated immune response can be activated without an influence of infectious agents. So, pattern recognition receptors play the key role performing the innate and adaptive immune response. In addition, many PRRs have a number of other vital functions apart from participation in immune response realization. The fundamental character and diversity of PRR functions have led to amazingly rapid research in this field. Such investigations are very promising for medicine as immune system plays a key role in vast majority if not all human diseases, and the process of discovering the new aspects of the immune system functioning is rapidly ongoing. The role of Toll-like receptors in cancer was analyzed in certain reviews but the data are still scattered. This collection of reviews systematizes the key information in the field.

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

Frontiers Media SA (5)


License

CC by (5)


Language

english (5)


Year
From To Submit

2018 (2)

2016 (1)

2015 (1)

2014 (1)