Search results: Found 7

Listing 1 - 7 of 7
Sort by
Microdevices and Microsystems for Cell Manipulation

Authors: ---
ISBN: 9783038426189 9783038426191 Year: Pages: VII, 171 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physics (General)
Added to DOAB on : 2017-12-28 13:52:56
License:

Loading...
Export citation

Choose an application

Abstract

Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest.

Microfluidics for Cells and Other Organisms

Author:
ISBN: 9783039215621 / 9783039215638 Year: Pages: 200 DOI: 10.3390/books978-3-03921-563-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Microfluidics-based devices play an important role in creating realistic microenvironments in which cell cultures can thrive. They can, for example, be used to monitor drug toxicity and perform medical diagnostics, and be in a static-, perfusion- or droplet-based device. They can also be used to study cell-cell, cell-matrix or cell-surface interactions. Cells can be either single cells, 3D cell cultures or co-cultures. Other organisms could include bacteria, zebra fish embryo, C. elegans, to name a few.

Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function

Authors: ---
ISBN: 9783039216888 / 9783039216895 Year: Pages: 240 DOI: 10.3390/books978-3-03921-689-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.

Experimental and Numerical Studies in Biomedical Engineering

Authors: ---
ISBN: 9783039212477 / 9783039212484 Year: Pages: 130 DOI: 10.3390/books978-3-03921-248-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The term ‘biomedical engineering’ refers to the application of the principles and problem-solving techniques of engineering to biology and medicine. Biomedical engineering is an interdisciplinary branch, as many of the problems health professionals are confronted with have traditionally been of interest to engineers because they involve processes that are fundamental to engineering practice. Biomedical engineers employ common engineering methods to comprehend, modify, or control biological systems, and to design and manufacture devices that can assist in the diagnosis and therapy of human diseases. This Special Issue of Fluids aims to be a forum for scientists and engineers from academia and industry to present and discuss recent developments in the field of biomedical engineering. It contains papers that tackle, both numerically (Computational Fluid Dynamics studies) and experimentally, biomedical engineering problems, with a diverse range of studies focusing on the fundamental understanding of fluid flows in biological systems, modelling studies on complex rheological phenomena and molecular dynamics, design and improvement of lab-on-a-chip devices, modelling of processes inside the human body as well as drug delivery applications. Contributions have focused on problems associated with subjects that include hemodynamical flows, arterial wall shear stress, targeted drug delivery, FSI/CFD and Multiphysics simulations, molecular dynamics modelling and physiology-based biokinetic models.

Micro/Nano Devices for Blood Analysis

Authors: --- ---
ISBN: 9783039218240 / 9783039218257 Year: Pages: 174 DOI: 10.3390/books978-3-03921-825-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (7)


License

CC by-nc-nd (6)

CC by (1)


Language

eng (5)

english (2)


Year
From To Submit

2019 (5)

2017 (1)

2016 (1)

-->