Search results: Found 12

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Recent Advances in Scar Biology

Author:
ISBN: 9783038973980 9783038973997 Year: Pages: 202 DOI: 10.3390/books978-3-03897-399-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Pathology --- Physiology
Added to DOAB on : 2019-01-29 11:30:03
License:

Loading...
Export citation

Choose an application

Abstract

Scars develop in the final stage of wound healing. Wound healing and scarring involve complex biological pathways, and the exact mechanisms by which they are initiated, evolved, and regulated remain to be fully elucidated. Scarless wound healing is a major goal of medical science. To achieve this goal, it is necessary to elucidate the relevant clinical, histopathological, and molecular manifestations of scars, and to understand how these manifestations relate to each other.This Special Issue covers a selection of recent research topics and current review articles in the field of scar research for all kinds of tissues and organs.

Molecular Basis of Cardiovascular Diseases: Implications of Natriuretic Peptides

Authors: ---
ISBN: 9783039215829 9783039215836 Year: Pages: 212 DOI: 10.3390/books978-3-03921-583-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Cardiovascular
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The natriuretic peptides (NPs) family includes a class of hormones and their receptors needed for the physiological control of cardiovascular functions. The discovery of NPs provided a fundamental contribution into our understanding of the physiological regulation of blood pressure, and of heart and kidney functions. NPs have also been implicated in the pathogenesis of several cardiovascular diseases (CVDs), including hypertension, atherosclerosis, heart failure, and stroke. A fine comprehension of the molecular mechanisms dependent from NPs and underlying the promotion of cardiovascular damage has contributed to improve our understanding of the molecular basis of all major CVDs. Finally, the opportunity to target NPs in order to develop new therapeutic tools for a better treatment of CVDs has been developed over the years. The current Special Issue of the Journal covers all major aspects of the molecular implications of NPs in physiology and pathology of the cardiovascular system, including NP-based therapeutic approaches.

Keywords

PCSK9 --- natriuretic peptides --- adipose tissue --- lipid metabolism --- LDL receptor --- insulin --- natriuretic peptides --- hypertension --- stroke --- cardiac hypertrophy --- linkage analysis --- genetic variants --- animal models --- BNP --- NT-proBNP --- heart failure --- cardiac dysfunction --- forensic medicine --- postmortem biochemistry --- angiotensin receptor–neprilysin inhibitor --- natriuretic peptides --- renin–angiotensin system --- heart failure --- arterial hypertension --- natriuretic peptide --- vascular --- endothelial cell --- cardiomyocyte --- fibroblast --- inflammation --- heart failure --- hypertension --- angiogenesis --- heart failure --- natriuretic peptides --- preserved ejection fraction --- natriuretic peptides --- heart failure --- atrial fibrillation --- remodeling --- Idiopathic Pulmonary Arterial Hypertension (IPAH) --- Natriuretic Peptide Clearance Receptor (NPR-C) signaling --- atrial natriuretic peptide --- hypertension --- heart failure --- cardiometabolic disease --- obesity --- metabolic syndrome --- cGMP --- guanylyl cyclase receptor A --- natriuretic peptides --- natriuretic peptide --- cardiorenal syndrome --- vasopressor --- vasodilator --- kidney --- medulla --- renin-angiotensin-aldosterone system --- Atrial Natriuretic peptide --- natriuretic peptides --- cardiac remodelling --- cardiac hypertrophy --- vascular homeostasis --- atrial natriuretic peptide --- guanylyl cyclase/natriuretic peptide receptor-A --- gene-knockout --- gene-duplication --- hypertension --- congestive heart failure --- natriuretic peptides --- arterial hypertension --- pulmonary arterial hypertension --- heart failure --- stroke --- atrial fibrillation --- ARNi --- MANP

Links between Fibrogenesis and Cancer: Mechanistic and Therapeutic Challenges: Mechanistic and Therapeutic Challenges

Author:
ISBN: 9783039217069 9783039217076 Year: Pages: 348 DOI: 10.3390/books978-3-03921-707-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Tissue fibrosis may occur for unknown causes or be the consequence of many pathological conditions including chronic inflammatory or infectious diseases, autoimmune disorders, graft rejection, or malignancy. On the other hand, malignant tumors have been identified in fibrotic tissues decades ago, and now accumulating evidence suggests that fibrotic lesions enhance the risk of cancer in several organs such as liver, lungs, and breast. Disruption of an organ parenchymal cells and of its normal structural scaffold during tissue fibrogenesis appears to induce loss of cell polarity, promoting uncontrolled cell proliferation that may eventually lead to cancer development. Many cellular and molecular abnormalities including aberrant expression of microRNAs, genetic and epigenetic alterations, evasion or delayed apoptosis, unregulated intracellular signal pathways, and dysregulation or defective intercellular communications have been proposed to explain this link between fibrogenesis and carcinogenesis. However, the precise mechanisms of this fibrosis-to-cancer transition remain unclear. This book presents a collection of reviews and original articles summarizing recent advances in understanding the molecular mechanisms of cancer development in fibrotic organs.

Keywords

lung cancer --- renal injury --- fibrosis --- crizotinib --- anaplastic lymphoma kinase --- cystic formation --- pulmonary fibrosis --- butylidenephthalide --- SOX2 --- type I collagen --- bleomycin --- YAP --- TAZ --- Hippo pathway --- fibrosis --- cancer --- mechanotransduction --- TGF-? --- Wnt --- uterine fibroid --- leiomyoma --- tumor --- tumor necrosis factor ? --- cytokine --- growth factor --- inflammation --- clinical symptoms --- pathophysiology --- therapy --- hepatocellular carcinoma --- cirrhosis --- regeneration --- inflammation --- cytokines --- genetic instability --- reactive oxygen species --- idiopathic pulmonary fibrosis (IPF) --- lung cancer (LC) --- non-small cell lung cancer (NSCLC) --- acute lung injury --- protein S --- apoptosis --- signal pathway --- Erk1/2 --- lipopolysaccharide --- uterine fibroid --- leiomyoma --- smooth muscle tumor of uncertain malignant potential --- leiomyosarcoma --- myometrium --- immunohistochemistry --- marker --- pathology --- tumor --- diagnosis --- cancer-associated fibroblasts --- tumor microenvironment --- nanoparticles --- breast cancer --- antitumor efficacy --- cirrhosis --- HBV --- HCV --- hepatocellular carcinoma --- idiopathic pulmonary fibrosis --- lung cancer --- pathogenesis --- common pathways --- hepatocellular carcinoma (HCC) --- fibrosis --- cancer-associated fibroblasts (CAFs) --- hepatic stellate cells (HSCs) --- tumor microenvironment --- hepatocellular carcinoma --- non-alcoholic steatohepatitis --- fibrosis --- hepatic stellate cells --- extracellular matrix --- carcinogenesis --- angiogenesis --- cancer-associated fibroblasts --- extracellular matrix --- fibrosis --- heterogeneity --- interstitial fluid pressure --- metabolic reprogramming --- transforming growth factor-? --- tumor stiffness --- GPR40 --- GPR120 --- DHA --- omega-3 fatty acid --- SREBP-1 --- hepatocytes --- EMT --- lncRNA --- metastasis --- miRNA --- SMAD --- TGF-? --- targeted therapy --- tumor microenvironment --- n/a

microRNA Regulation in Health and Disease

Authors: ---
ISBN: 9783039217144 9783039217151 Year: Pages: 154 DOI: 10.3390/books978-3-03921-715-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Genetics
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

MicroRNAs (miRNAs) are small regulatory RNAs that play a crucial role in posttranscriptional gene regulation. Over two thousand miRNAs have been identified in humans, and many of them are conserved in other species. miRNAs are implicated in fundamental cellular functions, including development and disease. In the last decade, there has been an overwhelming amount of data contributing to the understanding of miRNA biogenesis and their target genes. Moreover, a significant amount of work has been carried out in developing miRNA biomarkers and therapeutics for various disease conditions. RNA-based markers and therapeutics have been proven to have a clinical impact, and many of these miRNA-based therapies are at various stages of human clinical trials and clinical applications. Notably, miRNAs are also found in exosomes, and are considered to impart intercellular communication and function via several different modalities, including tunneling nanotubes. In spite of our understanding of miRNA biology and function, there are many challenges in effectively using miRNAs as biomarkers and therapeutic agents in clinical applications. In this Special Issue, we are inviting reviews, perspectives, and original research articles to address some of these challenges. Topics will include, but are not limited to, miRNA biogenesis, clinical applications, extracellular function, biomarkers, miRNA immune regulation, signaling pathways, and preclinical models.

Wearable Wireless Devices

Authors: --- ---
ISBN: 9783039284429 9783039284436 Year: Pages: 176 DOI: 10.3390/books978-3-03928-443-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

With the growing interest in the use of technology in daily life, the potential for using wearable wireless devices across multiple segments, e.g., healthcare, sports, child monitoring, military, emergency, consumer electronics, etc., is rapidly increasing. Multibillion wearable sensors are predicted to be in use by 2025, with over 30% of them being new types of sensors that are only beginning to emerge. This book will focus on wireless wearable and implantable systems, flexible textile-based electronics, bio-electromagnetics, antennas and propagation, radio frequency (RF) circuits, sensors, security of wearables and implantable systems, nano-bio communication, and electromagnetic sensing

Diagnosis and Management of Pediatric Diseases

Author:
ISBN: 9783039219667 9783039219674 Year: Pages: 146 DOI: 10.3390/books978-3-03921-967-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

A screenshot of some the most rapidly evolving fields in Neonatology and Pediatrics with articles reviewing some metabolic dysregulations as well as non-oncologic diseases that may occur in infancy, childhood, youth. The illustrative material with original photographs and drawings highlighting some pathogenetic concepts are keystones of this book.

Long-Term Health Effects of the 9/11 Disaster

Authors: --- ---
ISBN: 9783039218127 9783039218134 Year: Pages: 298 DOI: 10.3390/books978-3-03921-813-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Philosophy
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The terrorist attacks on the World Trade Center towers on September 11, 2001, also referred as 9/11, was an iconic event in US history that altered the global and political response to terrorism. The attacks, which involved two planes hitting the twin towers in Lower Manhattan, New York City, resulted in the collapse of the buildings and over 2800 deaths of occupants of the buildings, fire, police and other responders and persons on the street in the vicinity of the collapsing buildings. The destroyed towers and the surrounding buildings have since been replaced but the health effects that resulted from the release of tons of dust, gases and debris as well as the life threat trauma are ongoing, and represent a major health burden among persons directly exposed. Hundreds of scientific publications have documented the physical and mental health effects attributed to the disaster. The current state-of-the-art in understanding the ongoing interactions of physical and mental health, especially PTSD, and the unique mechanisms by which pollutants from the building collapse, have resulted in long term pulmonary dysfunction, course of previously reported conditions, potential emerging conditions (e.g., heart disease and autoimmune diseases), as well as quality of life, functioning and unmet health care needs would be in the purview of this Special Issue on the 9/11 Disaster.

Keywords

counseling --- post-disaster --- psychotherapy --- mental health treatment --- treatment utilization --- World Trade Center --- indoor allergens sensitization --- asthma quality of life --- asthma control --- asthma outcomes --- mini asthma quality of life questionnaire --- asthma morbidity --- WTC-related asthma --- immunoglobulin E --- allergen exposure --- WTC attack --- respiratory symptoms --- lower Manhattan residents --- cleaning practices --- WTC --- fibrotic sarcoid --- injury --- inflammation --- fibrosis --- World Trade Center disaster --- pulmonary fibrosis --- dust --- injury --- physical health --- mental health --- World Trade Center disaster --- Short Form-12 (SF-12) --- HQoL --- 9/11 --- 9/11 disaster --- handgrip strength --- WTC responders --- PTSD --- depression --- aging --- 9/11 impact --- retirement --- chronic disease --- PTSD --- disaster --- income loss --- PTSD symptom change --- PCL score --- longitudinal analysis --- PTSD cluster --- WTC survivors --- 9/11 disaster --- obstructive sleep apnea --- comorbid insomnia --- sleep-related quality of life --- chronic sinusitis --- sleepiness --- WTC responders --- thyroid cancer --- 9/11 disaster --- World Trade Center --- surveillance bias --- sarcoidosis --- World Trade Center (WTC) --- Scadding stage --- lung function --- severe lung disease --- extrathoracic sarcoidosis --- cardiac sarcoidosis --- unmet mental health care needs --- Asian Americans --- World Trade Center attack --- disaster --- mental health conditions --- mental health service use --- health insurance --- social support --- stressful life events --- cognitive reserve --- cognitive decline --- latent class analysis --- disaster epidemiology --- PTSD --- airway physiology --- dust --- environmental health --- forced oscillation --- respiratory function --- small airway disease --- paresthesia --- neuropathic symptoms --- Cox regression --- hazard function --- World Trade Center exposure --- metabolic syndrome --- airway hyperreactivity --- World Trade Center --- disaster mental health --- evidence-based treatment --- mental health service utilization --- quality improvement --- 9/11 --- screening --- thyroid cancer --- biomarkers --- medical imaging --- pulmonary function tests --- lung injury --- occupational exposure --- epidemiological studies --- peripheral neuropathy --- prevalence --- World Trade Center --- rescue/recovery workers --- occupational exposure --- sarcoidosis --- World Trade Center --- 9/11 --- genetics --- firefighters --- FDNY --- 9/11 disaster --- asthma --- trigger(s) --- air pollution --- irritant(s) --- health-related quality of life --- n/a

mTOR in Human Diseases

Author:
ISBN: 9783039210602 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 1

Authors: --- ---
ISBN: 9783039280827 9783039280834 Year: Pages: 472 DOI: 10.3390/books978-3-03928-083-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Iron as Therapeutic Targets in Human Diseases Volume 2

Authors: --- ---
ISBN: 9783039281145 9783039281152 Year: Pages: 440 DOI: 10.3390/books978-3-03928-115-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.

Keywords

cinnamic acid derivatives --- soybean seed ferritin --- iron release --- binding ability --- Fe2+-chelating activity --- reducibility --- adverse event profile --- anaemia --- bioengineering --- labile iron --- intravenous iron --- iron-carbohydrate complex --- iron processing --- iron metabolism --- infection --- innate immunity --- hepcidin --- ferritin --- anemia of inflammation --- pharmaceutical targets --- iron deficiency anemia --- nutrient iron --- oral iron therapy --- FeSO4 --- NaFeEDTA --- non-transferrin-bound iron (NTBI) --- developing countries --- Indonesia --- neurodegeneration --- mitochondria --- therapy --- heme --- haem --- Iron-sulfur --- Friedreich Ataxia --- Oxidative stress --- Iron chelators --- iron deficiency --- anemia --- cancer --- hepcidin --- patient blood management --- malaria --- iron deficiency --- hepcidin --- TNF --- children --- Africa --- Anemia --- iron deficiency --- oral iron salts --- intravenous iron --- Sucrosomial® iron --- M cells --- bioavailability --- tolerability --- efficacy --- iron --- gut microbiota --- iron supplementation --- iron transporters --- mucosal immunity --- SCFA --- intestinal inflammation --- inflammatory bowel disease (IBD) --- colorectal cancer --- oxidative stress --- anaemia --- cardiovascular disease --- chronic kidney disease --- IV iron therapy --- bone homeostasis --- iron overload --- iron deficiency --- osteoclast --- osteoblast --- osteoporosis --- neurodegeneration with brain iron accumulation --- iron chelation therapy --- multifunctional iron chelators --- fluorescent iron chelator --- 3-hydroxy-4-pyridinone --- fluorophore --- rhodamine --- membrane interactions --- bacteria --- antibacterial activity --- histidine --- iron --- anemia --- oxidative stress --- kidney --- chelation --- iron --- retina --- age-related macular degeneration (AMD) --- iron --- lipid --- obesity --- cancer --- neurodegeneration --- iron chelation --- phlebotomy --- NCOA4 --- ferritinophagy --- iron homeostasis --- erythropoiesis --- ferroptosis --- cancer --- Tfr2 --- iron metabolism --- hepcidin --- erythropoiesis --- SNC --- ferritin --- iron mobilization --- chaotropes --- flavin nucleotide --- electron transfer --- kinetics --- ferritin --- iron --- iron delivery --- nanotechnology --- nanocage --- drug delivery --- inflammation --- serum biomarker --- iron metabolism --- hepcidin --- ferroportin --- hemochromatosis --- anemia --- hepcidin --- iron deficiency anemia --- iron dextran --- neonatal period --- pig --- supplementation --- Alzheimer’s disease --- neuroinflammation --- neurodegeneration --- cytokines --- neuroimmune responses --- iron --- genetic hemochromatosis --- non transferrin bound iron --- hepcidin --- ferroportin --- venesections --- Anemia of chronic disease --- anemia of inflammation --- hepcidin --- anti-hepcidin therapy --- iron supplementation --- macrophage --- central nurse macrophage --- red pulp macrophage --- Kupffer cell --- iron metabolism --- erythropoiesis --- erythroblastic islands --- erythrophagocytosis --- inflammation --- iron homeostasis --- lung diseases --- oxygen sensing --- hypoxia --- ferritin --- hereditary hyperferritinemia --- hereditary hypoferritinemia --- iron metabolism --- cataracts syndrome --- neurodegenerative disease --- n/a --- iron --- neurodegeneration --- NBIA --- hepcidin --- iron --- lung --- acute lung injury --- COPD --- lung infection --- cystic fibrosis --- iron --- anaemia --- infection --- malaria --- immunity --- brain development --- growth --- microbiome --- hepcidin --- ferritin --- iron supplementation --- infants --- children --- low and middle income countries --- liver --- iron --- hepcidin --- Mek/Erk --- Hfe --- Bmp/Smad --- iron --- mycobacteria --- immunity --- Alzheimer’s disease --- iron homeostasis --- ferroptosis --- senescence --- chelators --- macrophages --- iron --- metabolism --- inflammation --- iron --- ferritin --- acute kidney injury --- chronic kidney disease --- vascular calcification --- iron --- hepcidin --- ferroportin --- Interleukin-6 --- infection --- rheumatoid arthritis --- iron homeostasis --- iron absorption --- non-haem iron --- flavonoids --- developmental --- iron deficiency anemia --- neonatal --- transferrin receptor --- treatment --- hemochromatosis --- HFE --- natural history --- T lymphocytes --- MHC --- CD8+ T cells --- prevention --- iron homeostasis --- hepcidin --- protein binding --- peritoneal dialysis --- iron --- hepcidin --- iron regulatory proteins --- cardiomyocyte --- chronic heart failure --- pulmonary arterial smooth muscle cells --- pulmonary arterial hypertension --- iron --- brain --- neurophysiology --- cognition --- social behavior --- didox --- iron chelators --- antitumor compound --- iron metabolism --- RRM2 --- SLC40A1 --- ferroportin --- iron overload --- non-HFE --- ferritin --- hemochromatosis --- iron --- chelation --- neurodegenerative diseases --- pituitary --- brain --- hemopexin --- heme homeostasis --- iron homeostasis --- hemolysis --- haptoglobin --- ferroptosis --- inflammation --- biomarker --- heme oxygenase --- liver --- microbiome --- trauma --- hemorrhage --- iron metabolism --- hepcidin --- iron homeostasis --- ferroportin --- n/a

Listing 1 - 10 of 12 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (12)


License

CC by-nc-nd (12)


Language

english (12)


Year
From To Submit

2020 (6)

2019 (6)