Search results: Found 18

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
Optomechatronics

ISBN: 9783038420019 9783038420088 Year: Pages: 276 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-20 15:03:42
License:

Loading...
Export citation

Choose an application

Abstract

The field of optomechatronics provides synergistic effects of optics, mechanics and electronics for efficient sensor development. Optical sensors for the measurement of mechanical quantities, equipped with appropriate electronic signal (pre)processing means have a wide range of applications, from surface testing, stress monitoring, thin film analysis to biochemical sensing. The aim of this special issue is to provide an overview of actual research and innovative applications of optomechatronics in sensors. Papers addressing, inter alia, optical sensor principles, fiber-optic sensors, electronic speckle pattern interferometry, surface analysis, thin film measurement, FGB sensors, and biochemical sensors are provided.

State-Of-The- Art Sensors Technology in France 2016

Authors: ---
ISBN: 9783038426523 9783038426530 Year: Pages: 218 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Analytical Chemistry
Added to DOAB on : 2018-01-16 09:42:38
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue aims to provide a comprehensive overview of state-of-the-art sensors technology in France. It includes research articles that consolidate our understanding of the state-of-the-art in this area and also four reviews on hot fields in sensor technology (nanomaterials, electronic tongue and optical fibre networks).

Photovoltaic Materials and Electronic Devices

ISBN: 9783038422167 9783038422174 Year: Pages: XIV, 198 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-07-15 09:10:33
License:

Loading...
Export citation

Choose an application

Abstract

Given the state-of-the-art in solar photovoltaic (PV) technology and favorable financing terms, it is clear that PV has already obtained grid parity in specific locations [1]. Advances in the next generation of photovoltaic materials and photovoltaic devices can further reduce costs to enable all of humanity to utilize sustainable and renewable solar power [2]. This Special Issue of Materials will cover such materials, including modeling, synthesis, and evaluation of new materials and their solar cells.Specifically, this Special Issue will focus on five material technologies for advanced solar cells:1. New Concepts in PV Materials: Nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, low-cost III-V materials, bandgap engineering, hot-carrier effects, plasmonics, metamorphic materials, perovskite and related novel PV materials, novel light trapping, rectennas, quantum dots, carbon nanotubes, and graphene composites.2. Organic PV Materials: Polymer, hybrid and dye sensitized solar cells, high performance contacts, and lifetime degradation and mechanisms.3. Dye-Sensitized Solar Cells (DSSCs) Materials: Recent developments in dyes, working electrodes, technologies for device fabrications, and advances in new electrolytes.4. Amorphous, Nanostructured, and Thin Film Silicon PV Materials: Microstructure characterization, light induced degradation (SWE), large area and high deposition rates, novel processing routes, light trapping, multi-layers, and multi-junction devices.5. Passive Materials for all PV: Transparent conductive oxides (TCOs), encapsulation, connections, optics, glass, anti-reflection coatings (ARCs), alternative buffer layer materials, and contacts.

Surfaces and Interfaces for Renewable Energy

Authors: ---
ISBN: 9783039281282 9783039281299 Year: Pages: 108 DOI: 10.3390/books978-3-03928-129-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Environmental problems derived from the massive use of conventional energy resources are one of the main issues that our society has been facing in recent decades. Renewable energies (and particularly solar energy) have become a highly competitive means to meet the world’s increasing energy demands in a sustainable and clean manner. One of the key research challenges for the commercial deployment of several solar energy technologies is focused on the development of feasible and durable coatings that withstand appropriate optical and thermal performance over the lifetime of the solar facilities. This book addresses a number of relevant aspects related to coatings for renewable energies, including a deep survey of coatings used in photovoltaic solar energy, the development of a superhydrophobic and thermal stable silica coating that is potentially suitable for various industrial applications related to renewable technologies, the development of coatings to improve the resistance of structural materials used in concentrating solar thermal technologies with molten salts, and several research works related to solar reflectors for concentrating solar thermal technologies (such us the advanced analysis of the corrosion, the suitability of anti-soiling coatings, and the development of top protective coatings for high-temperature secondary concentrators).

Thin Film Transistor

Author:
ISBN: 9783039215263 9783039215270 Year: Pages: 108 DOI: 10.3390/books978-3-03921-527-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Recently, new wide-band energy gap semiconductors can be grown by ALD, PLD, sputtering, or MOCVD. They have great potential for the fabrication and application to TFTs. Inorganic semiconductors have good stability against environmental degradation over their organic counterparts, whereas organic materials are usually flexible, transparent, and when solution-processed at low temperatures, are prone to degradation when exposed to heat, moisture, and oxygen. For this Special Issue, we invited researchers to submit papers discussing the development of new functional and smart materials, and inorganic as well as organic semiconductor materials, such as ZnO, InZnO, GaO, AlGaO, AnGaO, AlN/GaN, conducting polymers, molecular semiconductors, perovskite-based materials, carbon nanotubes, carbon nanotubes/polymer composites, and 2D materials (e.g., graphene, MoS2) and their potential applications in display drivers, radio frequency identification tags, e-paper, gas, chemical and biosensors, to name but a few.

Silicon-Based Nanomaterials: Technology and Applications

Author:
ISBN: 9783039210428 9783039210435 Year: Pages: 94 DOI: 10.3390/books978-3-03921-043-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Silicon has been proven to be remarkably resilient as a commercial electronic material. The microelectronics industry has harnessed nanotechnology to continually push the performance limits of silicon devices and integrated circuits. Rather than shrinking its market share, silicon is displacing “competitor” semiconductors in domains such as high-frequency electronics and integrated photonics. There are strong business drivers underlying these trends; however, an important contribution is also being made by research groups worldwide, who are developing new configurations, designs, and applications of silicon-based nanoscale and nanostructured materials. This Special Issue features a selection of papers which illustrate recent advances in the preparation of chemically or physically engineered silicon-based nanostructures and their application in electronic, photonic, and mechanical systems.

Novel Membrane Technologies for Traditional Industrial Processes

Authors: --- --- ---
ISBN: 9783038977902 9783038977919 Year: Pages: 196 DOI: 10.3390/books978-3-03897-791-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Through reading this book, you will obtain information on: (1) the main problems in air separation and natural gas treatment by membrane separation and how to solve them; (2) processes involving membranes and new membrane materials for the more economical utilization of bio-resources; (3) energy selection and membrane development for more expedient and stable harnessing of the natural osmosis phenomenon; (4) many excellent contributions about catalytic membrane bioreactors; (5) how to fine-tune the arrangement of aquaporins (i.e., proteins identified in biological cells) to achieve superior water treatment efficiency.

Design and Development of Nanostructured Thin Films

Authors: --- ---
ISBN: 9783039287383 / 9783039287390 Year: Pages: 386 DOI: 10.3390/books978-3-03928-739-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)

Keywords

InAlN --- nanospiral --- metamaterial --- sputtering --- chirality --- microparticle deposition --- self-assembly --- homogeneity --- monomer synthesis --- mask --- hazardous organic solvents --- photonic nanostructures --- self-assembly --- polymer nanoparticles --- biomimetic solvent sensors --- iridescence --- mesoporous --- Al2O3 --- MgO --- poly(dimethylacrylamide) --- hydrogel --- thin film --- spin coating --- SEM --- FIB --- Kr physisorption --- hydrogenated amorphous carbon films --- metallic nanoparticles --- hybrid deposition system --- nanoscratch --- nanocomposites --- aqueous dispersion --- carbon nanotube --- graphene oxide --- ink --- rod coating --- electrical conductivity --- optical transmittance --- mechanical flexibility --- silk sericin --- agarose --- lysozyme --- composite gel --- wound dressing --- nanofiber --- lamination --- water filtration --- CdTe --- self-catalysed --- wires --- Mg alloy --- LDH --- corrosion --- deposition --- coating --- ReB2/TaN multilayers --- modulation structure --- first-principles calculation --- interfacial model --- adsorption energy --- interfacial energy --- biomaterial --- biomedical --- nanofibers --- scaffolds --- reinforced --- hybrid material --- thermal analysis --- nanofibrous membranes --- light trapping --- silicon thin film --- photovoltaics --- polystyrene sphere assisted lithography --- nanostructured back reflectors --- Raman scattering --- quantum confinement --- electron–phonon coupling --- polar semiconductors --- zinc oxide --- metal-organic framework --- microscopy --- thin films --- powders --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- barrier material --- nanocoating of SiOx --- polymeric matrix --- plasma deposition --- PVD --- PA-PVD --- PECVD --- permeation --- CERAMIS® --- SorpTest --- iron oxides --- FeO --- Fe3O4 --- ultrathin films --- epitaxial growth --- platinum --- ruthenium --- symmetry --- LEEM --- LEED --- XPEEM --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- thin films --- TiO2NPs --- AuNPs --- photocatalysis --- mercury vapors adsorbing layer --- PAS device --- iron oxides --- ultrathin films --- silver --- epitaxial growth --- structural characterization --- STM --- LEED --- XPS --- DFT --- model system --- Pt thin deposits --- galvanic displacement --- UPD --- SLRR --- electrocatalysis --- nanostructured films --- birefringence --- nanocrystalline cellulose --- Mueller matrix --- vanadium dioxide --- post-treatment --- plasma irradiation --- luminous transmittance --- phase transition performance --- electrospinning deposition --- chemosensor --- nanocomposite conductive polymers --- polyhydroxibutyrate --- polystyrene --- H2TPP --- VOCs selectivity --- mesoporous graphene --- thin film --- nanostructure --- CaxCoO2 --- sputtering --- phase transformation --- Ge surface engineering --- La2O3 passivation layer --- atomic layer deposition --- electrical properties

Crystal Growth of Multifunctional Borates and Related Materials

Author:
ISBN: 9783038978381 9783038978398 Year: Pages: 116 DOI: 10.3390/books978-3-03897-839-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Borate crystals are attractive for different technological applications because of their favorable physical and chemical properties like stability and high transparency, both high thermal and non-linear optical coefficients, making them ideal active media for highly efficient solid state lasers. In this Special Issue, different aspects of multifunctional borate crystals are discussed, including ortho- and oxyorthoborates and compounds with condensed anions, as well as their nonlinear optical and laser properties and piezoelectric characteristics. For this reason, complex investigations of the phase relationships in multi-component borate melts, the study of crystal growth conditions of novel high-temperature borates, and the development of the &ldquo;crystallization conditions, composition, structure, and properties&rdquo; concept will provide a scientific basis for growth technologies of high performance electronic and optical devices and components with a variety of industrial, medical and many other applications. In the meantime, these relationships can help to estimate the affinity of synthetic borate materials with their natural prototypes and structural analogues.

Nanogenerators in Korea

Authors: ---
ISBN: 9783038976226 Year: Pages: 160 DOI: 10.3390/books978-3-03897-623-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

Fossil fuels leaded the 21st century industrial revolution but caused some critical problems such as exhaustion of resources and global warming. Also, current power plants require too much high cost and long time for establishment and facilities to provide electricity. Thus, developing new power production systems with environmental friendliness and low-cost is critical global needs. There are some emerging energy harvesting technologies such as thermoelectric, piezoelectric, and triboelectric nanogenerators, which have great advantages on eco-friendly low-cost materials, simple fabrication, and various operating sources. Since the introduction of various energy harvesting technologies, many novel designs and applications as power suppliers and physical sensors in the world have been demonstrated based on their unique advantages. In this Special Issue, we would like to address and share basic approaches, new designs, and industrial applications related to thermoelectric, piezoelectric, and triboelectric devices which are on-going in Korea. With this Special Issue, we aim to promote fundamental understanding and to find novel ways to achieve industrial product manufacturing for energy harvesters.

Listing 1 - 10 of 18 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (18)


License

CC by-nc-nd (17)

CC by (1)


Language

english (17)

eng (1)


Year
From To Submit

2020 (3)

2019 (12)

2018 (1)

2016 (1)

2014 (1)