Search results: Found 3

Listing 1 - 3 of 3
Sort by
Mitochondria: the cell powerhouse and nexus of stress

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192830 Year: Pages: 121 DOI: 10.3389/978-2-88919-283-0 Language: English
Publisher: Frontiers Media SA
Subject: Biology --- Physiology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Mitochondrion, a sub-cellular organelle originated from primary endosymbiosis, plays a vital role in energy metabolism of eukaryotic cells. The transfer of electrons through the electron transport chain (ETC) to molecular oxygen accompanied by the extrusion of protons from the matrix generate an electrochemical gradient across the inner mitochondrial membrane (IMM) that is used for ATP synthesis by oxidative phosphorylation. Despite many aspects of ATP synthesis have been delineated, regulatory mechanisms responsible for energy synthesis and transfer still remain to be uncovered. In addition to energy function, mitochondria play a crucial role in cell metabolism under both physiological and pathological conditions through their participation in many intracellular signaling pathways. Studies over the last 30 years provide strong evidence that mitochondria are the nexus of various stresses which initiate cell death through apoptosis, oncosis, necrosis and autophagy depending on the severity of the stress and cellular energy status. The release of several pro-apoptotic proteins such as cytochrome c, Smac/DIABLO, AIF, endonuclease G from intermembrane space initiates both caspase-dependent and caspase-independent apoptosis. The formation of the mitochondrial permeability transition pore in the IMM promotes cell death mostly through necrosis whereas a mild stress activates autophagy. Due to their critical roles in both cell death and survival mitochondria have been widely considered as an important target for various pharmacological and conditional therapeutic approaches. Currently, a large number of mitochondria-targeted agents are suggested to prevent (in ischemia reperfusion injury, cardiovascular, neurodegenerative and other diseases) or stimulate (in various cancers) cell death. This Research Topic focuses on the role of mitochondria in the regulation of cell metabolism and signaling under physiological and pathological conditions. Studies performed on cultured cells and isolated organs/tissues using different animal and cellular models of various diseases are also included and discussed.

Astrocytic-neuronal-astrocytic Pathway Selection for Formation and Degradation of Glutamate/GABA

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192434 Year: Pages: 168 DOI: 10.3389/978-2-88919-243-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Biology --- Medicine (General) --- Internal medicine
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

Endocrinological research early recognized the importance of intercellular interactions and realized the importance of glutamatergic and GABAergic signaling. In turn this signalling depends on elaborate interactions between astrocytes and neurons, without which neurons would be unable to produce, reuse and metabolize transmitter glutamate and GABA. Details of these subjects are described in this Research Topic by key investigators in this field. It focuses on the intricate and extremely swift pathway producing these amino acid transmitters from glucose in brain but also discusses difficulties in determining expression of some of the necessary genes in astrocytes and related processes in pancreatic islets. However, it does not discuss how closely associated astrocytes and neurons are anatomically, enabling these interactions. This is elegantly shown in this cover image, kindly provided by Professor Andreas Reichenbach (University of Leipzig, Germany).

Molecular Science for Drug Development and Biomedicine

ISBN: 9783906980836 9783906980843 Year: Pages: 356
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 06:15:53
License:

Loading...
Export citation

Choose an application

Abstract

With the avalanche of biological sequences generated in the postgenomic age, molecular science is facing an unprecedented challenge, i.e., how to timely utilize the huge amount of data to benefit human beings. Stimulated by such a challenge, a rapid development has taken place in molecular science, particularly in the areas associated with drug development and biomedicine, both experimental and theoretical. The current thematic issue was launched with the focus on the topic of “Molecular Science for Drug Development and Biomedicine”, in hopes to further stimulate more useful techniques and findings from various approaches of molecular science for drug development and biomedicine.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)

MDPI - Multidisciplinary Digital Publishing Institute (1)


License

CC by (3)


Language

english (2)


Year
From To Submit

2014 (3)