Search results: Found 2

Listing 1 - 2 of 2
Sort by
At the doors of lexical access: The importance of the first 250 milliseconds in reading

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192601 Year: Pages: 112 DOI: 10.3389/978-2-88919-260-1 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Correct word identification and processing is a prerequisite for accurate reading, and decades of psycholinguistic and neuroscientific research have shown that the magical moments of visual word recognition are short-lived and markedly fast. The time window in which a given letter string passes from being a mere sequence of printed curves and strokes to acquiring the word status takes around one third of a second. In a few hundred milliseconds, a skilled reader recognizes an isolated word and carries out a number of underlying processes, such as the encoding of letter position and letter identity, and lexico-semantic information retrieval. However, the precise manner (and order) in which these processes occur (or co-occur) is a matter of contention subject to empirical research. There's no agreement regarding the precise timing of some of the essential processes that guide visual word processing, such as precise letter identification, letter position assignment or sub-word unit processing (bigrams, trigrams, syllables, morphemes), among others. Which is the sequence of processes that lead to lexical access? How do these and other processes interact with each other during the early moments of word processing? Do these processes occur in a serial fashion or do they take place in parallel? Are these processes subject to mutual interaction principles? Is feedback allowed for within the earliest stages of word identification? And ultimately, when does the reader's brain effectively identify a given word? A vast number of questions remain open, and this Research Topic will cover some of them, giving the readership the opportunity to understand how the scientific community faces the problem of modeling the early stages of word identification according to the latest neuroscientific findings.

Eye movement-related brain activity during perceptual and cognitive processing

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192731 Year: Pages: 196 DOI: 10.3389/978-2-88919-273-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

The recording and analysis of electrical brain activity associated with eye movements has a history of several decades. While the early attempts were primarily focused on uncovering the brain mechanisms of eye movements, more recent approaches use eye movements as markers of the ongoing brain activity to investigate perceptual and cognitive processes. This recent approach of segmenting brain activity based on eye movement behavior has several important advantages. First, the eye movement system is closely related to cognitive functions such as perception, attention and memory. This is not surprising since eye movements provide the easiest and the most accurate way to extract information from our visual environment and the eye movement system largely determines what information is selected for further processing. The eye movement-based segmentation offers a great way to study brain activity in relation to these processes. Second, on the methodological level, eye movements constitute a natural marker to segment the ongoing brain activity. This overcomes the problem of introducing artificial markers such as ones for stimulus presentation or response execution that are typical for a lab-based research. This opens possibilities to study brain activity during self-paced perceptual and cognitive behavior under naturalistic conditions such as free exploration of scenes. Third, by relating eye movement behavior to the ongoing brain activity it is possible to see how perceptual and cognitive processes unfold in time, being able to predict how brain activity eventually leads to behavior. This research topic illustrates advantages of the combined recording and analysis of eye movements and neural signals such as EEG, local field potentials and fMRI for investigation of the brain processes in humans and animals. The contributions include research papers, methodology papers and reviews demonstrating conceptual and methodological achievements in this rapidly developing field.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2014 (2)

-->