Search results: Found 4

Listing 1 - 4 of 4
Sort by
Innate immunity and neurodegenerative disorders

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193103 Year: Pages: 87 DOI: 10.3389/978-2-88919-310-3 Language: English
Publisher: Frontiers Media SA
Subject: Psychiatry --- Therapeutics --- Neurology --- Medicine (General) --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Inflammation of the brain in the context of neurodegenerative disorders is an area of intense debate and discussion, not least in terms of its pathogenic significance and the extent to which it drives disease processes and pathology. This inflammation can take several forms including innate responses recruiting microglia, humoral responses involving antibody, complement mediated processes and cellular T-cell activation, of which the role and extent of each may differ between diseases. Whilst some diseases have been more intensely linked to inflammation and long-term degeneration (e.g. MS), more traditional chronic neurodegenerative disorders have been thought of in terms of intrinsic neuronal pathology with a secondary innate response. However, it has been described that microglia activation is an early event of many degenerative disorders and evidence is accumulating that it may play a critical role in actually causing pathology and driving disease processes. If true, this would have major therapeutic implications, but what is the evidence that this is the case? The initial observations by Patrick McGeer’s group of post-mortem tissue from patients with Parkinson’s disease revealed the presence of activated brain microglia and has thus lead to the hypothesis that chronic inflammation could participate to neuronal degenerative processes. The significance of these original observations has only been recently revisited, and the development of more powerful tools to study the brain immune response has certainly contributed to this field of research. Chronic inflammation in the brain can take many forms but of particular interest has been the resident microglia and the role they play in this process. In this context, microglia have often been thought to become activated only after the disease has begun and then to contribute minimally to the degenerative process. Emerging new concepts challenge this view by proposing that microglial senescence, for example, may release the disease process and/or accelerate it. In addition, microglia, once activated, can adopt different phenotypes which can be both pro-inflammatory and pro-repair and may impact not only on the healthy adult neuronal population but on those new neurons derived from neurogenic niches of the adult brain. In this Research Topic, we attempt to explore this by first considering the innate immune responses in the brain and the methods by which they can be studied experimentally and in patients with various neurodegenerative disorders. This sets the scene for then discussing a range of different disorders including Alzheimer’s, Parkinson’s, Huntington’s disease and amyotrophic lateral sclerosis. These papers seek to discuss the evidence for an innate immune response and whether this is beneficial or detrimental, as well as its therapeutic implications.

Model organisms in inflammation and cancer

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193707 Year: Pages: 83 DOI: 10.3389/978-2-88919-370-7 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Science (General)
Added to DOAB on : 2015-11-19 16:29:12
License:

Loading...
Export citation

Choose an application

Abstract

A link between inflammation and cancer was initially made by Rudolf Virchow back in the 19th century. Nowadays many cancers are considered dependent on inflammatory responses to microbial and damaged-self stimuli and both arms of immunity, innate and adaptive, are playing a role in promoting cancer. Moreover, besides environmental factors, opportunistic pathogens contribute to inflammation and cancer. Nevertheless, microbial influence on chronic disease is sometimes difficult to discern, especially in the context of polymicrobial communities, such as those found in the digestive tract. In this light, model organisms provide important insights into immune and growth signals that promote cancer, and suggest therapies that will selectively target potentially harmful microbes or modulate host responses. A number of review and opinion articles in this series address novel aspects and paradigms of the interactions between the microbiota and the host in relation to inflammation and cancer.

Keywords

Drosophila --- human --- mouse --- innate immunity --- microbiota --- Hologenome --- diet --- aging

Cancer Immunotherapy & Immuno-monitoring: Mechanism, Treatment, Diagnosis, and Emerging Tools

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193806 Year: Pages: 97 DOI: 10.3389/978-2-88919-380-6 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

In the past decade, significant progresses have taken place in the field of cancer immunotherapy. Tumor-targeting immunotherapies are being developed for most human cancers, including melanoma, prostate cancer, glioblastoma, sarcoma, lung carcinoma and hepatocellular carcinoma. The FDA has approved multiple molecular immunotherapeutics, such as Ipilimumab; cellular immunotherapies (e.g. adoptive cell transfer) are being tested in phase II/III clinical trials. Immunotherapetics has evolved into a sophisticated field: Multimodal therapeutic regimens are administrated to induce focused responses, curtail side- effects and improve therapeutic efficacy. The lack of effective clinical assessment tools remains a major challenge. Because of the intricacy of antitumor response, it is essential to scrutinize individual tumor-targeting immune cells and their functions at the finest details - molecules. In this regard, flow cytometry analysis modernized hematology and allows characterization of surface molecular signature on individual cells. More recently, microchip technologies and new variations of cytometry have enormously expanded the spectrum, throughout and multiplexity of single cell analysis. Nowadays, tens of millions of readouts can be generated through the course of a cancer immunotherapy to monitor the abundance, phenotype and a myriad of effector functions of single immune cells. At the same time, big data analytics and data mining methodologies have been adapted to achieve sensible diagnostic interpretations. Such a marriage of technology and analytics opens the door for informative point-of-care assessment of therapeutic efficacy and ensures timely therapeutic decisions. The new generation of personalized clinical diagnostics will revolutionize healthcare in the years to come.

Obesity-induced inflammation and insulin resistance

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194285 Year: Pages: 120 DOI: 10.3389/978-2-88919-428-5 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Immune response and metabolic regulation are highly integrated and this interface maintains a central homeostatic system, dysfunction of which can cause obesity-associated metabolic disorder such as type 2 diabetes, fatty liver disease and cardiovascular disease. Insulin resistance is an underlying basis for the pathogenesis of these metabolic diseases. Overnutrition or obesity activates the innate immune system with subsequent recruitment of immune cells such as macrophages and T cells, which contributes to the development of insulin resistance. In particular, a significant advance in our understanding of obesity-associated inflammation and insulin resistance has been recognition of the critical role of adipose tissue macrophages (ATMs). ATMs are a prominent source of proinflammatory cytokines, such as TNF-a and IL-6, that can block insulin action in adipose tissue, skeletal muscle, and liver autocrine/paracrine signaling and cause systemic insulin resistance via endocrine signaling, providing a potential link between inflammation and insulin resistance. All articles in this topic highlight the interconnection between obesity, inflammation, and insulin resistance in all its diversity to the mechanisms of obesity-induced inflammation and role of immune system in the pathogenesis of insulin resistance and diabetes.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

Frontiers Media SA (4)


License

CC by (4)


Language

english (4)


Year
From To Submit

2014 (4)