Search results: Found 2

Listing 1 - 2 of 2
Sort by
Neuroscience perspectives on Security: Technology, Detection, and Decision Making

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196005 Year: Pages: 108 DOI: 10.3389/978-2-88919-600-5 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

In security science, efficient operation depends typically on the interaction between technology, human and machine detection and human and machine decision making. A perfect example of this interplay is ‘gatekeeping’, which is aimed to prevent the passage of people and objects that represent known threats from one end to the other end of an access point. Gatekeeping is most often achieved via visual inspections, mass screening, random sample probing and/or more targeted controls on attempted passages at points of entry. Points of entry may be physical (e.g. national borders) or virtual (e.g. connection log-ons). Who and what are defined as security threats and the resources available to gatekeepers determine the type of checks and technologies that are put in place to ensure appropriate access control. More often than not, the net performance of technology-aided screening and authentication systems ultimately depends on the characteristics of human operators. Assessing cognitive, affective, behavioural, perceptual and brain processes that may affect gatekeepers while undertaking this task is fundamental. On the other hand, assessing the same processes in those individuals who try to breach access to secure systems (e.g. hackers), and try to cheat controls (e.g. smugglers) is equally fundamental and challenging. From a security standpoint it is vital to be able to anticipate, focus on and correctly interpret the signals connected with such attempts to breach access and/or elude controls, in order to be proactive and to enact appropriate responses. Knowing cognitive, behavioral, social and neural constraints that may affect the security enterprise will undoubtedly result in a more effective deployment of existing human and technological resources. Studying how inter-observer variability, human factors and biology may affect the security agenda, and the usability of existing security technologies, is of great economic and policy interest. In addition, brain sciences may suggest the possibility of novel methods of surveillance and intelligence gathering. This is just one example of a typical security issue that may be fruitfully tackled from a neuroscientific and interdisciplinary perspective. The objective of our Research Topic was to document across relevant disciplines some of the most recent developments, ideas, methods and empirical findings that have the potential to expand our knowledge of the human factors involved in the security process. To this end we welcomed empirical contributions using different methodologies such as those applied in human cognitive neuroscience, biometrics and ethology. We also accepted original theoretical contributions, in the form of review articles, perspectives or opinion papers on this topic. The submissions brought together researchers from different backgrounds to discuss topics which have scientific, applicative and social relevance.

Using neurophysiological signals that reflect cognitive or affective state

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196135 Year: Pages: 314 DOI: 10.3389/978-2-88919-613-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

What can we learn from spontaneously occurring brain and other physiological signals about an individual’s cognitive and affective state and how can we make use of this information? One line of research that is actively involved with this question is Passive Brain-Computer-Interfaces (BCI). To date most BCIs are aimed at assisting patients for whom brain signals could form an alternative output channel as opposed to more common human output channels, like speech and moving the hands. However, brain signals (possibly in combination with other physiological signals) also form an output channel above and beyond the more usual ones: they can potentially provide continuous, online information about an individual’s cognitive and affective state without the need of conscious or effortful communication. The provided information could be used in a number of ways. Examples include monitoring cognitive workload through EEG and skin conductance for adaptive automation or using ERPs in response to errors to correct for a behavioral response. While Passive BCIs make use of online (neuro)physiological responses and close the interaction cycle between a user and a computer system, (neuro)physiological responses can also be used in an offline fashion. Examples of this include detecting amygdala responses for neuromarketing, and measuring EEG and pupil dilation as indicators of mental effort for optimizing information systems. The described field of applied (neuro)physiology can strongly benefit from high quality scientific studies that control for confounding factors and use proper comparison conditions. Another area of relevance is ethics, ranging from dubious product claims, acceptance of the technology by the general public, privacy of users, to possible effects that these kinds of applications may have on society as a whole. In this Research Topic we aimed to publish studies of the highest scientific quality that are directed towards applications that utilize spontaneously, effortlessly generated neurophysiological signals (brain and/or other physiological signals) reflecting cognitive or affective state. We especially welcomed studies that describe specific real world applications demonstrating a significant benefit compared to standard applications. We also invited original, new kinds of (proposed) applications in this area as well as comprehensive review articles that point out what is and what is not possible (according to scientific standards) in this field. Finally, we welcomed manuscripts on the ethical issues that are involved. Connected to the Research Topic was a workshop (held on June 6, during the Fifth International Brain-Computer Interface Meeting, June 3-7, 2013, Asilomar, California) that brought together a diverse group of people who were working in this field. We discussed the state of the art and formulated major challenges, as reflected in the first paper of the Research Topic.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2015 (2)