Search results: Found 3

Listing 1 - 3 of 3
Sort by
Mechanisms of Neural Circuit Formation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194032 Year: Pages: 179 DOI: 10.3389/978-2-88919-403-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The formation of the proper pattern of neuronal circuits during development is critical for the normal function of the vertebrate brain and for the survival of the organism. Circuit tracing studies spanning the past 100 years have revealed the beauty and exquisite intricacy of this pattern, which represents the most complex biological system known. In humans, aberrant circuit formation is a likely underlying cause of a wide variety of birth defects and neurological disorders, including autism, intellectual disability, and schizophrenia. Furthermore, future therapeutic approaches to restoring the function of damaged neural circuits will require a better understanding of the developmental constraints under which those circuits were originally assembled. For these reasons, elucidating the molecular mechanisms of neural circuit formation is a major goal of neurobiology today.

Cell and molecular signaling, and transport pathways involved in growth factor control of synaptic development and function

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196432 Year: Pages: 112 DOI: 10.3389/978-2-88919-643-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Brain derived neurotophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) signaling has been extensively studied for its roles in the central nervous system (CNS) ranging from cell survival, axonal and dendritic growth and synapse formation. Intracellular signaling pathways triggered by BDNF activate gene transcription, translation, post-translational functions, trafficking of key synaptic proteins, and synaptic release mechanism. BDNF-TrkB signaling mediates long-lasting activity-modulated synaptic changes on excitatory and inhibitory neurons and plays significant roles in circuit development and modulation. Furthermore, this pathway is critical for learning, memory, sensory processing and other cognitive functions, and is implicated in neurological and psychiatric diseases. In addition to BDNF, more recent studies have identified new “growth” factors that play important roles in the development, maturation and maintenance and modulation of synaptic function. However, details of the cytoplamic signaling systems downstream of these synaptogenic factors are often less understood than conventional neurotophin signaling. This e-Book has collected original studies and review articles that present cellular and molecular mechanisms concerning activity-dependent synapse formation and their implications for behavior and brain disorders. It is our hope that readers will perceive this volume as a showcase for diversity and complexity of synaptogenic growth factors, and will stimulate further studies in this field.

Molecular mechanisms regulating cytotoxic lymphocyte development and function, and their associations to human diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192793 Year: Pages: 163 DOI: 10.3389/978-2-88919-279-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Cytotoxic lymphocytes, comprised of NK cells and cytotoxic T cells, play a pivotal role in immune defense. By directed release of perforin-containing lytic granules, NK and cytotoxic T cells can eradicate pathogen-infected, tumorigenic, and otherwise stressed cells. By the virtue of cytokine and chemokine secretion, they can influence other cells of the immune system. Through these processes, cytotoxic lymphocytes also contribute to the maintenance of immune homeostasis. In recent years, much progress has been made with respect to the mechanisms by which cytotoxic lymphocytes develop, differentiate, and exert their effector functions. In a clinical perspective, a wide variety of mutations impairing cytotoxic lymphocyte development and/or function have been associated with immunodeficiency and severe diseases in humans. Aberrant activity of cytotoxic T cells and/or NK cells has been linked to an increased susceptibility to viral infections, persistent inflammation, cancer and autoimmunity. In addition, lymphocyte cytotoxic activity may be harnessed therapeutically to target tumor cells in different adoptive cellular therapy regimes, or through the use of recombinant antibodies. Still, a number of questions remain in regards to how cytotoxic lymphocytes develop, their relationships and plasticity, as well as the mechanisms dictating target cell discrimination, lytic granule release and induction of target cell death. In this Research Topic we encourage submission of research articles, reviews, perspectives, or methods on cytotoxic lymphocyte development and function, their relation to the pathogenesis or treatment of different diseases, as well as comparison between similarities and/or differences in their effector functions. Considering the clinical significance of NK cells and cytotoxic T cells, we aim to provide a range of articles summarizing the current knowledge on the identification and elucidation of the mechanisms governing cytotoxic lymphocyte activity.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (3)


License

CC by (3)


Language

english (3)


Year
From To Submit

2015 (3)