Search results: Found 2

Listing 1 - 2 of 2
Sort by
Insights into Microbe-Microbe Interactions in Human Microbial Ecosystems: Strategies to be Competitive

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450527 Year: Pages: 116 DOI: 10.3389/978-2-88945-052-7 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a “healthy status”. The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats.All parts of our body having communication with the external environment such as the skin, vagina, the respiratory tract or the gastrointestinal tract are colonized by a specific microbial community. The colon is by far the most densely populated organ in the human body. The pool of microbes inhabiting our body is known as “microbiota” and their collective genomes as “microbiome”. These microbial ecosystems regulate important functions of the host, and their functionality and the balance among the diverse microbial populations is essential for the maintenance of a “healthy status”. The impressive development in recent years of next generation sequencing (NGS) methods have made possible to determine the gut microbiome composition. This, together with the application of other high throughput omic techniques and the use of gnotobiotic animals has greatly improved our knowledge of the microbiota acting as a whole. In spite of this, most members of the human microbiota are largely unknown and remain still uncultured. The final functionality of the microbiota is depending not only on nutrient availability and environmental conditions, but also on the interrelationships that the microorganisms inhabiting the same ecological niche are able to establish with their partners, or with their potential competitors. Therefore, in such a competitive environment microorganisms have had to develop strategies allowing them to cope, adapt, or cooperate with their neighbors, which may imply notable changes at metabolic, physiological and genetic level. The main aim of this Research Topic was to contribute to better understanding complex interactions among microorganisms residing in human microbial habitats.

Constitutive modeling of amorphous thermoplastic polymers with special emphasis on manufacturing processes

Author:
Book Series: Schriftenreihe des Instituts für Mechanik, Karlsruher Institut für Technologie ISSN: 23634936 ISBN: 9783731505501 Year: Volume: 2 Pages: XX, 184 p. DOI: 10.5445/KSP/1000056493 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This book deals with the development of constitutive models for the mechanical behavior of amorphous thermoplastic polymers at large strains. A special emphasis lies on the temperature dependency so that the altered material behavior at high temperatures can be considered. To implement the developed constitutive models the software tool AceGen is used by which program code is generated and optimized as well as derivatives are calculated automatically.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (1)

KIT Scientific Publishing (1)


License

CC by (1)

CC by-sa (1)


Language

english (2)


Year
From To Submit

2016 (2)