Search results: Found 3

Listing 1 - 3 of 3
Sort by
Engineering Synthetic Metabolons: From Metabolic Modelling to Rational Design of Biosynthetic Devices

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199211 Year: Pages: 130 DOI: 10.3389/978-2-88919-921-1 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Biotechnology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The discipline of Synthetic Biology has recently emerged at the interface of biology and engineering. The definition of Synthetic Biology has been dynamic over time ever since, which exemplifies that the field is rapidly moving and comprises a broad range of research areas. In the frame of this Research Topic, we focus on Synthetic Biology approaches that aim at rearranging biological parts/ entities in order to generate novel biochemical functions with inherent metabolic activity. This Research Topic encompasses Pathway Engineering in living systems as well as the in vitro assembly of biomolecules into nano- and microscale bioreactors. Both, the engineering of metabolic pathways in vivo, as well as the conceptualization of bioreactors in vitro, require rational design of assembled synthetic pathways and depend on careful selection of individual biological functions and their optimization. Mathematical modelling has proven to be a powerful tool in predicting metabolic flux in living and artificial systems, although modelling approaches have to cope with a limitation in experimentally verified, reliable input variables. This Research Topic puts special emphasis on the vital role of modelling approaches for Synthetic Biology, i.e. the predictive power of mathematical simulations for (i) the manipulation of existing pathways and (ii) the establishment of novel pathways in vivo as well as (iii) the translation of model predictions into the design of synthetic assemblies.

Water Resource Variability and Climate Change

ISBN: 9783038422440 9783038422303 Year: Pages: XVI, 378 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Sciences
Added to DOAB on : 2016-11-04 09:40:08
License:

Loading...
Export citation

Choose an application

Abstract

Climate change affects global and regional water cycling, as well as surficial and subsurface water availability. These changes have increased the vulnerabilities of ecosystems and of human society. Understanding how climate change has affected water resource variability in the past and how climate change is leading to rapid changes in contemporary systems is of critical importance for sustainable development in different parts of the world. This Special Issue focuses on “Water Resource Variability and Climate Change” and aims to present a collection of articles addressing various aspects of water resource variability as well as how such variabilities are affected by changing climates. Potential topics include the reconstruction of historic moisture fluctuations, based on various proxies (such as tree rings, sediment cores, and landform features), the empirical monitoring of water variability based on field survey and remote sensing techniques, and the projection of future water cycling using numerical model simulations.

New Frontiers in Multiscale Modelling of Advanced Materials

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197552 Year: Pages: 91 DOI: 10.3389/978-2-88919-755-2 Language: English
Publisher: Frontiers Media SA
Subject: General and Civil Engineering --- Materials
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Atomistic simulations, based on ab-initio and semi-empirical approaches, are nowadays widespread in many areas of physics, chemistry and, more recently, biology. Improved algorithms and increased computational power widened the areas of application of these computational methods to extended materials of technological interest, in particular allowing unprecedented access to the first-principles investigation of their electronic, optical, thermodynamical and mechanical properties, even where experiments are not available. However, for a big impact on the society, this rapidly growing field of computational approaches to materials science has to face the unfavourable scaling with the system size, and to beat the time-scale bottleneck. Indeed, many phenomena, such as crystal growth or protein folding for example, occur in a space/time scale which is normally out of reach of present simulations. Multi-scale approaches try to combine different scale algorithms along with matching procedures in order to bridge the gap between first-principles and continuum-level simulations. This Research Topic aims at the description of recent advances and applications in these two emerging fields of ab-inito and multi-scale materials modelling for both ground and excited states. A variety of theoretical and computational techniques are included along with the application of these methods to systems at increasing level of complexity, from nano to micro. Crossing the borders between several computational, theoretical and experimental techniques, this Research Topic aims to be of interest to a broad community, including experimental and theoretical physicists, chemists and engineers interested in materials research in a broad sense.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)

MDPI - Multidisciplinary Digital Publishing Institute (1)


License

CC by (2)

CC by-nc-nd (1)


Language

english (3)


Year
From To Submit

2016 (3)