Search results: Found 2

Listing 1 - 2 of 2
Sort by
Anthropogenic Impacts on the Microbial Ecology and Function of Aquatic Environments

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199396 Year: Pages: 248 DOI: 10.3389/978-2-88919-939-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Aquatic ecosystems are currently experiencing unprecedented levels of impact from human activities including over-exploitation of resources, habitat destruction, pollution and the influence of climate change. The impacts of these activities on the microbial ecology of aquatic environments are only now beginning to be defined. One of the many implications of environmental degradation and climate change is the geographical expansion of disease- causing microbes such as those from the Vibrio genus. Elevating sea surface temperatures correlate with increasing Vibrio numbers and disease in marine animals (e.g. corals) and humans. Contamination of aquatic environments with heavy metals and other pollutants affects microbial ecology with downstream effects on biogeochemical cycles and nutrient turnover. Also of importance is the pollution of aquatic environments with antibiotics, resistance genes and the mobile genetic elements that house resistance genes from human and animal waste. Such contaminated environments act as a source of resistance genes long after an antibiotic has ceased being used in the community. Environments contaminated with mobile genetic elements that are adapted to human commensals and pathogens function to capture new resistance genes for potential reintroduction back into clinical environments. This research topic encompasses these diverse topics and describes the affect(s) of human activity on the microbial ecology and function in aquatic environments and, describes methods of restoration and for modelling disturbances.

Bad Bugs in the XXIst Century: Resistance Mediated by Multi-Drug Efflux Pumps in Gram-Negative Bacteria

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199310 Year: Pages: 193 DOI: 10.3389/978-2-88919-931-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Microbiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

The discovery of antibiotics represented a key milestone in the history of medicine. However, with the rise of these life-saving drugs came the awareness that bacteria deploy defence mechanisms to resist these antibiotics, and they are good at it. Today, we appear at a crossroads between discovery of new potent drugs and omni-resistant superbugs. Moreover, the misuse of antibiotics in different industries has increased the rate of resistance development by providing permanent selective pressure and, subsequently, enrichment of multidrug resistant pathogens. As a result, antimicrobial resistance has now become an urgent threat to public health worldwide (http://www.who.int/drugresistance/documents/surveillancereport/en/). The development of multidrug resistance (MDR) in an increasing number of pathogens, including Pseudomonas, Acinetobacter, Klebsiella, Salmonella, Burkholderia, and other Gram-negative bacteria is a most severe issue. Membrane efflux pump complexes of the Resistance-Nodulation-cell Division (RND) superfamily play a key role in the development of MDR in these bacteria. RND pumps, together with other transporters, contribute to intrinsic and acquired resistance to most, if not all, of the antimicrobial compounds available in our drug arsenal. Given the enormous drug polyspecificity of MDR efflux pumps, studies on their mechanism of action are extremely challenging, and this has negatively impacted both the development of new antibiotics that are able to evade these efflux pumps as well as the design of pump inhibitors. The collection of articles in this eBook, published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy, aims to update the reader about the latest advances on the structure and function of RND efflux transporters, their roles in the overall multidrug resistance phenotype of Gram-negative pathogens, and on strategies to inhibit their activities. A deeper understanding of the mechanisms by which RND efflux pumps, alone or synergistically with other efflux pumps, are able to limit the concentration of antimicrobial compounds inside the bacterial cell, may pave the way for new, more directed, inhibitor and antibiotic design to ultimately overcome antimicrobial resistance by Gram-negatives.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2016 (2)