Search results: Found 3

Listing 1 - 3 of 3
Sort by
Minding Glial Cells in the Novel Understandings of Mental Illness

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451579 Year: Pages: 275 DOI: 10.3389/978-2-88945-157-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

Traditionally, abnormalities of neurons and neuronal networks including synaptic abnormalities and disturbance of neurotransmitters have dominantly been believed to be the main causes of psychiatric disorders. Recent cellular neuroscience has revealed various unknown roles of glial cells such as astrocytes, oligodendrocytes and microglia. These glial cells have proved to continuously contact with neurons /synapses, and have been shown to play important roles in brain development, homeostasis and various brain functions. Beyond the classic neuronal doctrine, accumulating evidence has suggested that abnormalities and disturbances of neuron-glia crosstalk may induce psychiatric disorders, while these mechanisms have not been well understood. This Research Topic of the Frontiers in Cellular Neuroscience will focus on the most recent developments and ideas in the study of glial cells (astrocytes, oligodendrocytes and microglia) focusing on psychiatric disorders such as schizophrenia, mood disorders and autism. Not only molecular, cellular and pharmacological approaches using in vitro / in vivo experimental methods but also translational research approaches are welcome. Novel translational research approaches, for example, using novel techniques such as induced pluripotent stem (iPS) cells, may lead to novel solutions. We believe that investigations to clarify the correlation between glial cells and psychiatric disorders contribute to a novel understanding of the pathophysiology of these disorders and the development of effective treatment strategies.

Neuroimmune Interface in Health and Diseases

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453788 Year: Pages: 174 DOI: 10.3389/978-2-88945-378-8 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology --- Neurology
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

It is now well appreciated that the immune system, in addition to its traditional role in defending the organism against pathogens, communicate in a well-organized fashion with the brain to maintain homeostasis and regulate a set of neural functions. Perturbation in this brain-immune interactions due to inflammatory responses may lead to psychiatric and neurological disorders. Microglia are one of the essential cells involved in the brain-immune interactions. Microglial cells are now not simply regarded as resident tissue macrophages in the brain. These cells are derived from myeloid progenitor cells in the yolk sac in early gestation, travel to the brain parenchyma and interact actively with neurons during the critical period of neurogenesis. Microglia provide a trophic support to developing neurons and take part in the neural wiring through the activity-dependent synapse elimination via direct neuron-microglia interactions. Altered microglial functions including changes in the gene expression due to early life inflammatory events or psychological and environmental stressors can be causally related to neurodevelopmental diseases and mental health disorders. This type of alterations in the neural functions can occur in the absence of infiltration of inflammatory cells in the brain parenchyma or leptomeninges. In this sense, the pathogenetic state underlying a significant part of psychiatric and neurological diseases may be similar to “para-inflammation”, an intermediate state between homeostatic and classical inflammatory states as defined by Ruslan Medzhitov (Nature 454:428-35, 2008). Therefore, it is important to study how systemic inflammation affects brain health and how local peripheral inflammation induces changes in the brain microenvironment. Chronic pain is also induced by disturbance in otherwise well-organized multisystem interplay comprising of reciprocal neural, endocrine and immune interactions. Especially, early-life insults including exposure to immune challenges can alter the neuroanatomical components of nociception, which induces altered pain response later in life. Recently the discrete roles of microglia and blood monocyte-derived macrophages are being defined. The distinction may be further highlighted by disorders in which the brain parenchymal tissue is damaged. Therefore, studies investigating the dynamics of immune cells in traumatic brain injury and neurotropic viral infections including human immunodeficiency virus, etc. as well as neurodegenerative diseases such as amyotrophic lateral sclerosis are promising to clarify the interplay between the central nervous and immune systems. The understanding of the histological architecture providing the infrastructure of such neuro-immune interplay is also essential. This Frontiers research topic brings together fourteen articles and aims to create a platform for researchers in the field of psychoneuroimmunology to share the recent theories, hypotheses and future perspectives regarding open questions on the mechanisms of cell-cell interactions with chemical mediators among the nervous, immune and endocrine systems. We hope that this platform would reveal the relevance of the studies on multisystem interactions to enhance the understanding of the mechanisms underlying a wide variety of neurological and psychiatric disorders.

The Major Discoveries of Cajal and His Disciples: Consolidated Milestones for the Neuroscience of the XXIst Century

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450664 Year: Pages: 161 DOI: 10.3389/978-2-88945-066-4 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

When Santiago Ramón y Cajal started to unravel the fine structure of the nervous system in the last decades of the XIXth century maybe only his unbeatable soul of brave Spaniard imagined that most of the descriptions were scientific truths that lasted to date. Simple histological stainings, curiosity to ameliorate these, monocular microscopes, patience for drawing his observations and a rich imaginative open mind: this is the recipy for Cajal success. His descriptions of connectivity in the nervous system, compiled in Cajal's opus magna published in 1904 ("Textura del sistema nervioso del hombre y los vertebrados") and 1911 ("Histologie du systeme nerveux"), have been corroborated by modern techniques decade after decade. Even more, the main hypothesis that Cajal raised are universally recognised as biological laws, today: the neuron theory, the law on the dynamic polarization of the neuron and the chemotropic hypothesis. That is: the nervous system is not a sincitial network but is formed by individual cells; the transmission of the nerve impulses follow a main direction within a given neuron; the axons are guided by chemical substances in a chemotropic way, till form synapses with their targets. Attracted by Cajal's strong personality and scientific success, a number of medical students and doctors join him in the crusade to explore the nervous system. And the seed planted by the universal savant was really successful: Francisco Tello described interesting aspects of the regeneration of peripheral nerves which are very useful for neuroscientist currently working in this topic; Nicolás Achúcarro significantly contributed to study neuroglia and future microglia; Pío del Río-Hortega identified two out of the four main nervous cell types, the oligodendrocytes and microglia, and proposed an almost still valid classification for the CNS tumours; Fernando de Castro made was the first description of arterial chemoreceptors in the carotid body; Rafael Lorente de Nó was a dominant figure of Neuroscience for decades after the IInd World War, first describing the columnar organization of the cerebral cortex well before Mountcastle, Hubbel and Wiesel. Even less recognised co-workers and disciples of Cajal (his brother Pedro Ramón y Cajal, Domingo Sánchez, the neurologist Rodríguez-Lafora... protagonised discoveries that are consolidated scientific truths today). Altogether, it is difficult (if not impossible) to find a school in biology contributing in such a fundamental and variated way to the common acervo like the collectively known as Cajal School or Spanish Neurological School. Although the particular way to work of the Maestro, selecting a pleiade of brilliant collaborators with whom accomplish such a titanic feat, giving them freedom for their studies, has been recognised and confronted to antagonic systems followed by other relevant scientists and scientific schools, the general recognition of such a significant major milestones for Neuroscience and their vigency in the well-marched XXIst century is not: this is the purpose of this Ebook, to remind all these examples of how successful can be the scientific work when it is minutious, constant and performed by brilliant, imaginative and skilled scientists with a minimal conditions supporting their efforts.When Santiago Ramón y Cajal started to unravel the fine structure of the nervous system in the last decades of the XIXth century maybe only his unbeatable soul of brave Spaniard imagined that most of the descriptions were scientific truths that lasted to date. Simple histological stainings, curiosity to ameliorate these, monocular microscopes, patience for drawing his observations and a rich imaginative open mind: this is the recipy for Cajal success. His descriptions of connectivity in the nervous system, compiled in Cajal's opus magna published in 1904 ("Textura del sistema nervioso del hombre y los vertebrados") and 1911 ("Histologie du systeme nerveux"), have been corroborated by modern techniques decade after decade. Even more, the main hypothesis that Cajal raised are universally recognised as biological laws, today: the neuron theory, the law on the dynamic polarization of the neuron and the chemotropic hypothesis. That is: the nervous system is not a sincitial network but is formed by individual cells; the transmission of the nerve impulses follow a main direction within a given neuron; the axons are guided by chemical substances in a chemotropic way, till form synapses with their targets. Attracted by Cajal's strong personality and scientific success, a number of medical students and doctors join him in the crusade to explore the nervous system. And the seed planted by the universal savant was really successful: Francisco Tello described interesting aspects of the regeneration of peripheral nerves which are very useful for neuroscientist currently working in this topic; Nicolás Achúcarro significantly contributed to study neuroglia and future microglia; Pío del Río-Hortega identified two out of the four main nervous cell types, the oligodendrocytes and microglia, and proposed an almost still valid classification for the CNS tumours; Fernando de Castro made was the first description of arterial chemoreceptors in the carotid body; Rafael Lorente de Nó was a dominant figure of Neuroscience for decades after the IInd World War, first describing the columnar organization of the cerebral cortex well before Mountcastle, Hubbel and Wiesel. Even less recognised co-workers and disciples of Cajal (his brother Pedro Ramón y Cajal, Domingo Sánchez, the neurologist Rodríguez-Lafora... protagonised discoveries that are consolidated scientific truths today). Altogether, it is difficult (if not impossible) to find a school in biology contributing in such a fundamental and variated way to the common acervo like the collectively known as Cajal School or Spanish Neurological School. Although the particular way to work of the Maestro, selecting a pleiade of brilliant collaborators with whom accomplish such a titanic feat, giving them freedom for their studies, has been recognised and confronted to antagonic systems followed by other relevant scientists and scientific schools, the general recognition of such a significant major milestones for Neuroscience and their vigency in the well-marched XXIst century is not: this is the purpose of this Ebook, to remind all these examples of how successful can be the scientific work when it is minutious, constant and performed by brilliant, imaginative and skilled scientists with a minimal conditions supporting their efforts.

Listing 1 - 3 of 3
Sort by
Narrow your search

Publisher

Frontiers Media SA (3)


License

CC by (3)


Language

english (3)


Year
From To Submit

2017 (3)