Search results: Found 46

Listing 1 - 10 of 46 << page
of 5
>>
Sort by
Advanced Memristor Modeling: Memristor Circuits and Networks

Author:
ISBN: 9783038971047 9783038971030 Year: Pages: 172 DOI: doi.org/10.3390/books978-3-03897-103-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2019-05-22 16:48:48
License:

Loading...
Export citation

Choose an application

Abstract

The investigation of new memory schemes, neural networks, computer systems, and many other improved electronic devices is very important for the future generation’s electronic circuits and for their widespread application in all the areas of industry. In this respect, the analysis of new efficient and advanced electronic elements and circuits is an essential field of highly developed electrical and electronic engineering. The resistance-switching phenomenon, observed in many amorphous oxides, has been investigated since 1970 and is a promising technology for constructing new electronic memories. It has been established that such oxide materials have the ability for changing their conductance in accordance with the applied voltage, and for memorizing their state for long-time interval. Similar behaviour has been predicted for the memristor element by Leon Chua in 1971. The memristor is proposed in accordance with symmetry considerations and the relationships between the four basic electric quantities—electric current i, voltage v, charge q, and magnetic flux Ψ. The memristor is an essential passive one-port element together with the resistor, inductor, and capacitor. The Williams HP research group has made a link between resistive switching devices and the memristor proposed by Chua. A number of scientific papers related to memristors and memristor devices have been issued, and several memristor models have been proposed. The memristor is a highly nonlinear component. It relates the electric charge q and the flux linkage, expressed as a time integral of the voltage. The memristor element has the important capability for remembering the electric charge passed through its cross-section and its respective resistance, when the electrical signals are switched off. Due to its nano-scale dimensions, non-volatility, and memorizing properties, the memristor is a sound potential candidate for application in computer high-density memories, artificial neural networks, and many other electronic devices.

Machine Learning and Embedded Computing in Advanced Driver Assistance Systems (ADAS)

Authors: ---
ISBN: 9783039213757 9783039213764 Year: Pages: 344 DOI: 10.3390/books978-3-03921-376-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book contains the latest research on machine learning and embedded computing in advanced driver assistance systems (ADAS). It encompasses research in detection, tracking, LiDAR

Keywords

Vehicle-to-X communications --- Intelligent Transport Systems --- VANET --- DSRC --- Geobroadcast --- multi-sensor --- fusion --- deep learning --- LiDAR --- camera --- ADAS --- object tracking --- kernel based MIL algorithm --- Gaussian kernel --- adaptive classifier updating --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- joystick --- two-wheeled --- terrestrial vehicle --- path planning --- infinity norm --- p-norm --- kinematic control --- navigation --- actuation systems --- maneuver algorithm --- automated driving --- cooperative systems --- communications --- interface --- automated-manual transition --- driver monitoring --- visual tracking --- discriminative correlation filter bank --- occlusion --- sub-region --- global region --- autonomous vehicles --- driving decision-making model --- the emergency situations --- red light-running behaviors --- ethical and legal factors --- T-S fuzzy neural network --- road lane detection --- map generation --- driving assistance --- autonomous driving --- real-time object detection --- autonomous driving assistance system --- urban object detector --- convolutional neural networks --- machine vision --- biological vision --- deep learning --- convolutional neural network --- Gabor convolution kernel --- recurrent neural network --- enhanced learning --- autonomous vehicle --- crash injury severity prediction --- support vector machine model --- emergency decisions --- relative speed --- total vehicle mass of the front vehicle --- perception in challenging conditions --- obstacle detection and classification --- dynamic path-planning algorithms --- drowsiness detection --- smart band --- electrocardiogram (ECG) --- photoplethysmogram (PPG) --- recurrence plot (RP) --- convolutional neural network (CNN) --- squeeze-and-excitation --- residual learning --- depthwise separable convolution --- blind spot detection --- machine learning --- neural networks --- predictive --- vehicle dynamics --- electric vehicles --- FPGA --- GPU --- parallel architectures --- optimization --- panoramic image dataset --- road scene --- object detection --- deep learning --- convolutional neural network --- driverless --- autopilot --- deep leaning --- object detection --- generative adversarial nets --- image inpainting --- n/a

Statistical Analysis and Stochastic Modelling of Hydrological Extremes

Author:
ISBN: 9783039216642 9783039216659 Year: Pages: 294 DOI: 10.3390/books978-3-03921-665-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Meteorology and Climatology
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Hydrological extremes have become a major concern because of their devastating consequences and their increased risk as a result of climate change and the growing concentration of people and infrastructure in high-risk zones. The analysis of hydrological extremes is challenging due to their rarity and small sample size, and the interconnections between different types of extremes and becomes further complicated by the untrustworthy representation of meso-scale processes involved in extreme events by coarse spatial and temporal scale models as well as biased or missing observations due to technical difficulties during extreme conditions. The complexity of analyzing hydrological extremes calls for robust statistical methods for the treatment of such events. This Special Issue is motivated by the need to apply and develop innovative stochastic and statistical approaches to analyze hydrological extremes under current and future climate conditions. The papers of this Special Issue focus on six topics associated with hydrological extremes: Historical changes in hydrological extremes; Projected changes in hydrological extremes; Downscaling of hydrological extremes; Early warning and forecasting systems for drought and flood; Interconnections of hydrological extremes; Applicability of satellite data for hydrological studies.

Keywords

rainfall --- monsoon --- high resolution --- TRMM --- drought prediction --- APCC Multi-Model Ensemble --- seasonal climate forecast --- machine learning --- sparse monitoring network --- Fiji --- drought analysis --- ANN model --- drought indices --- meteorological drought --- SIAP --- SWSI --- hydrological drought --- discrete wavelet --- global warming --- statistical downscaling --- HBV model --- flow regime --- uncertainty --- reservoir inflow forecasting --- artificial neural network --- wavelet artificial neural network --- weighted mean analogue --- variation analogue --- streamflow --- artificial neural network --- simulation --- forecasting --- support vector machine --- evolutionary strategy --- heavy storm --- hyetograph --- temperature --- clausius-clapeyron scaling --- climate change --- the Cauca River --- climate variability --- ENSO --- extreme rainfall --- trends --- statistical downscaling --- random forest --- least square support vector regression --- extreme rainfall --- polynomial normal transform --- multivariate modeling --- sampling errors --- non-normality --- extreme rainfall analysis --- statistical analysis --- hydrological extremes --- stretched Gaussian distribution --- Hurst exponent --- INDC pledge --- precipitation --- extreme events --- extreme precipitation exposure --- non-stationary --- extreme value theory --- uncertainty --- flood regime --- flood management --- Kabul river basin --- Pakistan --- extreme events --- innovative methods --- downscaling --- forecasting --- compound events --- satellite data

Dynamics Days Latin America and the Caribbean 2018

Authors: ---
ISBN: 9783039215034 9783039215041 Year: Pages: 142 DOI: 10.3390/books978-3-03921-504-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Mathematics
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

This book contains various works presented at the Dynamics Days Latin America and the Caribbean (DDays LAC) 2018. Since its beginnings, a key goal of the DDays LAC has been to promote cross-fertilization of ideas from different areas within nonlinear dynamics. On this occasion, the contributions range from experimental to theoretical research, including (but not limited to) chaos, control theory, synchronization, statistical physics, stochastic processes, complex systems and networks, nonlinear time-series analysis, computational methods, fluid dynamics, nonlinear waves, pattern formation, population dynamics, ecological modeling, neural dynamics, and systems biology. The interested reader will find this book to be a useful reference in identifying ground-breaking problems in Physics, Mathematics, Engineering, and Interdisciplinary Sciences, with innovative models and methods that provide insightful solutions. This book is a must-read for anyone looking for new developments of Applied Mathematics and Physics in connection with complex systems, synchronization, neural dynamics, fluid dynamics, ecological networks, and epidemics.

Brain-Computer Interfaces for Human Augmentation

Authors: --- ---
ISBN: 9783039219063 9783039219070 Year: Pages: 128 DOI: 10.3390/books978-3-03921-907-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Psychology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

The field of Brain–Computer Interfaces (BCIs) has grown rapidly in the last few decades, allowing the development of faster and more reliable assistive technologies based on direct links between the brain and an external device. Novel applications of BCIs have also been proposed, especially in the area of human augmentation, i.e., enabling people to go beyond human limitations in sensory, cognitive and motor tasks. Brain-imaging techniques, such as electroencephalography, have been used to extract neural correlates of various brain processes and transform them, via machine learning, into commands for external devices. Brain stimulation technology has allowed to trigger the activation of specific brain areas to enhance the cognitive processes associated to the task at hand, hence improving performance. BCIs have therefore extended their scope from assistive technologies for people with disabilities to neuro-tools for human enhancement. This Special Issue aims at showing the recent advances in BCIs for human augmentation, highlighting new results on both traditional and novel applications. These include, but are not limited to, control of external devices, communication, cognitive enhancement, decision making and entertainment.

Refrigeration Systems and Applications 2019

Authors: --- ---
ISBN: 9783039219520 9783039219537 Year: Pages: 200 DOI: 10.3390/books978-3-03921-953-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The Special Issue “Refrigeration Systems and Applications” aims to encourage researchers to address the concerns associated with climate change and the sustainability of artificial cold production systems, and to further the transition to the more sustainable technologies and methodologies of tomorrow through theoretical, experimental, and review research on the different applications of refrigeration and associated topics.

Intelligent Control in Energy Systems

Author:
ISBN: 9783039214150 9783039214167 Year: Pages: 508 DOI: 10.3390/books978-3-03921-416-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust ?-synthesis for microgrids, and neuro-fuzzy systems in energy storage.

Keywords

lithium-ion battery pack --- soft internal short circuit --- model-based fault detection --- battery safety --- internal short circuit resistance --- load frequency control --- model uncertainty --- ?-synthesis --- differential evolution --- decision tree --- preventive control --- Fault Ride Through Capability --- doubly-fed induction generator --- ancillary service --- frequency regulation --- demand response --- commercial/residential buildings --- HVAC systems --- model predictive control --- rule-based control --- position control --- static friction --- exhaust gas recirculation (EGR) valve system --- automotive application --- hybrid electric vehicle --- compound structured permanent-magnet motor --- energy management strategy --- instantaneous optimization minimum power loss --- back propagation (BP) neural network --- power transformer winding --- vibration characteristics --- multiphysical field analysis --- short-circuit experiment --- winding-fault characteristics --- occupancy model --- occupancy-based control --- model predictive control --- energy efficiency --- building climate control --- solar monitoring system --- photovoltaic array --- energy management --- demand side management --- operation limit violations --- probabilistic power flow --- network sensitivity --- neural networks --- railway --- high-speed railway --- neutral section --- medium voltage --- thyristor --- AC static switch --- adaptive backstepping --- nonlinear power systems --- sliding mode control --- error compensation --- ?-class function --- energy internet --- multi-energy complementary --- integrated energy systems --- distribution network planning --- electric power consumption --- multi-step forecasting --- long short term memory --- convolutional neural network --- system identification --- parameter estimation --- system modelling --- model reduction --- polynomial expansion --- orthogonal least square --- industrial process --- electric vehicle --- battery packs --- active balance --- model predictive control --- hierarchical Petri nets --- urban microgrids --- phase-load balancing --- fuzzy logic controller --- MPPT: maximum power point tracking --- photovoltaic system --- step-up boost converter --- proton exchange membrane fuel cell --- four phases interleaved boost converter --- neural network controller --- AC-DC converters --- bridgeless SEPIC PFC converter --- repetitive controller --- current distortion --- current controller design --- stochastic power system operating point drift --- wind integrated power system --- power oscillations --- adaptive damping control --- continuous voltage control --- multiple-point control --- interaction minimization --- pilot point --- adjacent areas --- ANFIS --- artificial neural network --- fuzzy --- small scale compressed air energy storage (SS-CAES) --- voltage controlling --- electric meter --- error estimation --- line loss --- RLS --- double forgetting factors --- hybrid power plant --- control architecture --- coordination of reserves --- frequency support --- frequency control dead band --- fast frequency response --- frequency containment reserve --- line switching --- voltage violations --- three-stage --- fractional order fuzzy PID controller --- neural network algorithm --- PEM fuel cell --- MPPT operation --- sensitivity analysis --- intelligent control --- artificial intelligence --- energy management system --- smart micro-grid --- energy systems --- intelligent buildings --- forecasting --- multi-agent control --- optimization

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976844 9783038976851 Year: Volume: 1 Pages: 426 DOI: 10.3390/books978-3-03897-685-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Learning to Understand Remote Sensing Images

Author:
ISBN: 9783038976981 9783038976998 Year: Volume: 2 Pages: 376 DOI: 10.3390/books978-3-03897-699-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Computer Science
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

With the recent advances in remote sensing technologies for Earth observation, many different remote sensors are collecting data with distinctive properties. The obtained data are so large and complex that analyzing them manually becomes impractical or even impossible. Therefore, understanding remote sensing images effectively, in connection with physics, has been the primary concern of the remote sensing research community in recent years. For this purpose, machine learning is thought to be a promising technique because it can make the system learn to improve itself. With this distinctive characteristic, the algorithms will be more adaptive, automatic, and intelligent. This book introduces some of the most challenging issues of machine learning in the field of remote sensing, and the latest advanced technologies developed for different applications. It integrates with multi-source/multi-temporal/multi-scale data, and mainly focuses on learning to understand remote sensing images. Particularly, it presents many more effective techniques based on the popular concepts of deep learning and big data to reach new heights of data understanding. Through reporting recent advances in the machine learning approaches towards analyzing and understanding remote sensing images, this book can help readers become more familiar with knowledge frontier and foster an increased interest in this field.

Keywords

hyperspectral image classification --- SELF --- SVMs --- Segment-Tree Filtering --- multi-sensor --- change feature analysis --- object-based --- multispectral images --- heterogeneous domain adaptation --- transfer learning --- multi-view canonical correlation analysis ensemble --- semi-supervised learning --- canonical correlation weighted voting --- ensemble learning --- image classification --- spatial attraction model (SAM) --- subpixel mapping (SPM) --- land cover --- mixed pixel --- spatial distribution --- hard classification --- building damage detection --- Fuzzy-GA decision making system --- machine learning techniques --- optical remotely sensed images --- sensitivity analysis --- texture analysis --- quality assessment --- ratio images --- Synthetic Aperture Radar (SAR) --- speckle --- speckle filters --- ice concentration --- SAR imagery --- convolutional neural network --- urban surface water extraction --- threshold stability --- sub-pixel --- linear spectral unmixing --- Landsat imagery --- image registration --- image fusion --- UAV --- metadata --- visible light and infrared integrated camera --- semantic segmentation --- CNN --- deep learning --- ISPRS --- remote sensing --- gate --- hyperspectral image --- sparse and low-rank graph --- tensor --- dimensionality reduction --- semantic labeling --- convolution neural network --- fully convolutional network --- sea-land segmentation --- ship detection --- hyperspectral image --- target detection --- multi-task learning --- sparse representation --- locality information --- remote sensing image correction --- color matching --- optimal transport --- CNN --- very high resolution images --- segmentation --- multi-scale clustering --- vehicle localization --- vehicle classification --- high resolution --- aerial image --- convolutional neural network (CNN) --- class imbalance --- deep learning --- convolutional neural network (CNN) --- fully convolutional network (FCN) --- classification --- remote sensing --- high resolution --- semantic segmentation --- deep convolutional neural networks --- manifold ranking --- single stream optimization --- high resolution image --- feature extraction --- hypergraph learning --- morphological profiles --- hyperedge weight estimation --- semantic labeling --- convolutional neural networks --- remote sensing --- deep learning --- aerial images --- hyperspectral image --- feature extraction --- dimensionality reduction --- optimized kernel minimum noise fraction (OKMNF) --- hyperspectral remote sensing --- endmember extraction --- multi-objective --- particle swarm optimization --- image alignment --- feature matching --- geostationary satellite remote sensing image --- GSHHG database --- Hough transform --- dictionary learning --- road detection --- Radon transform --- geo-referencing --- multi-sensor image matching --- Siamese neural network --- satellite images --- synthetic aperture radar --- inundation mapping --- flood --- optical sensors --- spatiotemporal context learning --- Modest AdaBoost --- HJ-1A/B CCD --- GF-4 PMS --- hyperspectral image classification --- automatic cluster number determination --- adaptive convolutional kernels --- hyperspectral imagery --- 1-dimensional (1-D) --- Convolutional Neural Network (CNN) --- Support Vector Machine (SVM) --- Random Forests (RF) --- machine learning --- deep learning --- TensorFlow --- multi-seasonal --- regional land cover --- saliency analysis --- remote sensing --- ROI detection --- hyperparameter sparse representation --- dictionary learning --- energy distribution optimizing --- multispectral imagery --- nonlinear classification --- kernel method --- dimensionality expansion --- deep convolutional neural networks --- road segmentation --- conditional random fields --- satellite images --- aerial images --- THEOS --- land cover change --- downscaling --- sub-pixel change detection --- machine learning --- MODIS --- Landsat --- very high resolution (VHR) satellite image --- topic modelling --- object-based image analysis --- image segmentation --- unsupervised classification --- multiscale representation --- GeoEye-1 --- wavelet transform --- fuzzy neural network --- remote sensing --- conservation --- urban heat island --- land surface temperature --- climate change --- land use --- land cover --- Landsat --- remote sensing --- SAR image --- despeckling --- dilated convolution --- skip connection --- residual learning --- scene classification --- saliency detection --- deep salient feature --- anti-noise transfer network --- DSFATN --- infrared image --- image registration --- MSER --- phase congruency --- hashing --- remote sensing image retrieval --- online learning --- hyperspectral image --- compressive sensing --- structured sparsity --- tensor sparse decomposition --- tensor low-rank approximation

Flood Forecasting Using Machine Learning Methods

Authors: --- ---
ISBN: 9783038975489 Year: Pages: 376 DOI: 10.3390/books978-3-03897-549-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

data scarce basins --- runoff series --- data forward prediction --- ensemble empirical mode decomposition (EEMD) --- stopping criteria --- method of tracking energy differences (MTED) --- deep learning --- convolutional neural networks --- superpixel --- urban water bodies --- high-resolution remote-sensing images --- monthly streamflow forecasting --- artificial neural network --- ensemble technique --- phase space reconstruction --- empirical wavelet transform --- hybrid neural network --- flood forecasting --- self-organizing map --- bat algorithm --- particle swarm optimization --- flood routing --- Muskingum model --- machine learning methods --- St. Venant equations --- rating curve method --- nonlinear Muskingum model --- hydrograph predictions --- flood routing --- Muskingum model --- hydrologic models --- improved bat algorithm --- Wilson flood --- Karahan flood --- flood susceptibility modeling --- ANFIS --- cultural algorithm --- bees algorithm --- invasive weed optimization --- Haraz watershed --- ANN-based models --- flood inundation map --- self-organizing map (SOM) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- ensemble technique --- artificial neural networks --- uncertainty --- streamflow predictions --- sensitivity --- flood forecasting --- extreme learning machine (ELM) --- backtracking search optimization algorithm (BSA) --- the upper Yangtze River --- deep learning --- LSTM network --- water level forecast --- the Three Gorges Dam --- Dongting Lake --- Muskingum model --- wolf pack algorithm --- parameters --- optimization --- flood routing --- flash-flood --- precipitation-runoff --- forecasting --- lag analysis --- random forest --- machine learning --- flood prediction --- flood forecasting --- hydrologic model --- rainfall–runoff, hybrid & --- ensemble machine learning --- artificial neural network --- support vector machine --- natural hazards & --- disasters --- adaptive neuro-fuzzy inference system (ANFIS) --- decision tree --- survey --- classification and regression trees (CART), data science --- big data --- artificial intelligence --- soft computing --- extreme event management --- time series prediction --- LSTM --- rainfall-runoff --- flood events --- flood forecasting --- data assimilation --- particle filter algorithm --- micro-model --- Lower Yellow River --- ANN --- hydrometeorology --- flood forecasting --- real-time --- postprocessing --- machine learning --- early flood warning systems --- hydroinformatics --- database --- flood forecast --- Google Maps

Listing 1 - 10 of 46 << page
of 5
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (46)


License

CC by-nc-nd (46)


Language

english (46)


Year
From To Submit

2019 (46)