Search results:
Found 3
Listing 1  3 of 3 
Sort by

Choose an application
Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.
PMSM (permanent magnet synchronous motor)  DBDTFC (deadbeatdirect torque and flux control)  torque control  stability  permanentmagnet machine  brushless machine  Vernier machine  flux switching machine  multiphase machine  outer rotor  electric vehicle  interior permanent magnet synchronous machines  magnetic reluctance network  brushless dc motor  phaseadvanced method  winding inductance  subfractional slotconcentrated winding  field weakening  periodic timer interrupt  Brushless DC motors  current ripples  current spikes  modeling  back electromotive force  RC filter  cogging torque  permanent magnet synchronous generator  small wind turbines  finite element method  renewable energy  energy conversion  finite element analysis  pulse width modulation  permanent magnet synchronous generator  wind generator  MPC  PMSM  vector control  speed tracking  brushless DC (BLDC) motor  sensorless motor  commutation error compensation  freewheeling period  permanent magnet synchronous motor (PMSM)  sliding mode observer (SMO)  parameter perturbation  predictive current control (PCC)  digital simulation  motor drives  interior permanentmagnet machines  finiteelement analysis  modeling  automotive applications  electric vehicle (EV)  hybrid electric vehicle (HEV)  mathematical model  saturation  coils  design tools  energy efficiency  linear generator  power control  stator  wave power  permanent magnet synchronous generator  electrical machine design  permanent magnet material  bulk electric system  condition monitoring  electrical signature analysis  fault diagnosis  predictive maintenance  synchronous generator  permanent magnet synchronous machine (PMSM)  flying start  sensorless control  permanent magnet synchronous generator  permanent magnet synchronous motor  electric propulsion systems  renewable energy  energy conversion
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Listing 1  3 of 3 
Sort by
