Search results: Found 20

Listing 1 - 10 of 20 << page
of 2
>>
Sort by
Electrical-field sensitive YBa?Cu?O??? detectors for real-time monitoring of picosecond THz pulses

Author:
Book Series: Karlsruher Schriftenreihe zur Supraleitung / Hrsg. Prof. Dr.-Ing. M. Noe, Prof. Dr. rer. nat. M. Siegel ISSN: 18691765 ISBN: 9783731507864 Year: Volume: 21 Pages: XIV, 199 p. DOI: 10.5445/KSP/1000081476 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

This work investigates the capability of the high-temperature superconductor YBCO to sense the evolution of the electrical field of THz pulses. A deposition process for ten unit-cell thin films and a sub-µm patterning process were developed to enable high sensitivities. The detector response to THz exctiations and its electrical-field sensitivity were studied. This unique characteristic allows for the investigation of instabilities of the THz radiation emitted from synchrotron storage rings.

Graphene and Other 2D Layered Nanomaterial-Based Films: Synthesis, Properties and Applications

Authors: ---
ISBN: 9783039219025 / 9783039219032 Year: Pages: 138 DOI: 10.3390/books978-3-03921-903-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Organic Chemistry
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

This book is dedicated to highlighting some relevant advances in the field of thin films and coatings based on two-dimensional crystals and layered nanomaterials. Due to their layered structure, graphene and a variety of new 2D inorganic nanosystems, called “graphene analogues”, have all attracted tremendous interest due to their unprecedented properties/superior performance, and may find applications in many fields from electronics to biotechnology. These two-dimensional systems are ultrathin and, hence, tend to be flexible, also presenting distinctive and nearly intrinsic characteristics, including electronic, magnetic, optical, thermal conductivity, and superconducting properties. Furthermore, the combination of different structures and synergetic effects may open new and unprecedented perspectives, making these ideal advanced materials for multifunctional assembled systems. As far as the field of coatings is concerned, new layered nanostructures may offer unique and multifunctional properties, including gas barrier, lubricant, conductive, magnetic, photoactive, self-cleaning, and/or antimicrobial surfaces. This book contains new findings on the synthesis and perspectives of multifunctional films that are at the forefront of the science and coating technologies.

Modeling and Practice of Erosion and Sediment Transport under Change

Authors: --- ---
ISBN: 9783039214310 / 9783039214327 Year: Pages: 212 DOI: 10.3390/books978-3-03921-432-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: “erosion” and “sediment transport”, “model” and “practice”, and “change”. The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.

Catalysts Deactivation, Poisoning and Regeneration

Authors: ---
ISBN: 9783039215461 / 9783039215478 Year: Pages: 254 DOI: 10.3390/books978-3-03921-547-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.

Keywords

hydrogenation --- copper --- catalyst --- water --- deactivation --- octanal --- octanol --- V2O5–WO3/TiO2 catalysts --- poisoning --- sulfur-containing sodium salts --- SO3 --- NO removal --- Cu/SSZ-13 --- NH3-SCR --- sodium ions --- deactivation mechanism --- sulfur poisoning --- coke deposition --- in situ regeneration --- Co-Zn/H-Beta --- NOx reduction by C3H8 --- catalyst deactivation --- diesel --- natural gas --- SEM --- TEM --- poisoning --- oxygen storage capacity --- thermal stability --- cyclic operation --- deactivation --- oxysulfate --- oxysulfide --- Selective Catalytic Reduction (SCR) --- SO2 poisoning --- Low-temperature catalyst --- nitrogen oxides --- nitrous oxide --- dry reforming of methane --- nickel catalysts --- barium carbonate --- deactivation by coking --- catalytic methane combustion --- exhaust gas --- catalyst durability --- Liquefied natural gas --- biogas --- vehicle emission control --- sulfur deactivation --- catalyst deactivation --- aluminum sulfate --- palladium sulfate --- regeneration --- phthalic anhydride --- vanadia-titania catalyst --- unusual deactivation --- physico-chemical characterization --- over-reduction --- vanadia species --- coke deposition --- DeNOx --- MW incinerator --- deactivation --- ammonium sulfates --- regeneration --- washing --- CO2 reforming --- Ni-catalyst --- syngas --- tetragonal zirconia --- phase stabilization --- CPO reactor --- effect of flow rate --- deactivation --- iso-octane --- Rh catalysts --- Rh --- homogeneous catalysis --- catalyst deactivation --- n/a

Thin Films for Energy Harvesting, Conversion, and Storage

Authors: --- ---
ISBN: 9783039217243 / 9783039217250 Year: Pages: 174 DOI: 10.3390/books978-3-03921-725-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.

Food Packaging. Materials and Technologies

Authors: ---
ISBN: 9783038977667 9783038977674 Year: Pages: 216 DOI: 10.3390/books978-3-03897-767-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Because of the increasing pressure on both food safety and packaging/food waste, the topic is important both for academics, applied research, industry and also for environment protection. Different materials, such as glass, metals, paper and paperboards, and non-degradable and degradable polymers, with versatile properties, are attractive for potential uses in food packaging. Food packaging is the largest area of application within the food sector. Only the nanotechnology-enabled products in the food sector account for ~50% of the market value, with and the annual growth rate is 11.65%. Technological developments are also of great interest. In the food sector, nanotechnology is involved in packaging materials with extremely high gas barriers, antimicrobial properties, and also in nanoencapsulants for the delivery of nutrients, flavors, or aromas, antimicrobial, and antioxidant compounds. Applications of materials, including nanomaterials in packaging and food safety, are in forms of: edible films, polymer nanocomposites, as high barrier packaging materials, nanocoatings, surface biocides, silver nanoparticles as potent antimicrobial agents, nutrition and neutraceuticals, active/bioactive packaging, intelligent packaging, nanosensors and nanomaterial-based assays for the detection of food relevant analytes (gasses, small organic molecules and food-borne pathogens) and bioplastics.

Micro/Nano Materials for Clean Energy and Environment

Authors: ---
ISBN: 9783039211289 / 9783039211296 Year: Pages: 123 DOI: 10.3390/books978-3-03921-129-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:41:30
License:

Loading...
Export citation

Choose an application

Abstract

The Tsinghua University–University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology (JCMEET) is a platform. It was established on Nov.11, 2017. The Chairperson of University Council of Tsinghua University, Dr. Xu Chen, and the President of the University of Waterloo, Dr. Feridun Hamdullahpur, attended the opening ceremony and unveiled the nameplate for the joint research center on 29th of March, 2018. The research center serves as a platform for researchers at both universities to conduct joint research in the targeted areas, and to meet regularly for information exchange, talent exchange, and knowledge mobilization, especially in the fields of micro/nano, energy, and environmental technologies. The center focuses on three main interests: micro/nano energy technology, micro/nano pollution control technology, and relevant fundamental research. In order to celebrate the first anniversary of the Joint Research Center, we were invited to serve as the Guest Editors of this Special Issue of Materials focusing on the topic of micro/nano-materials for clean energy and environment. It collects research papers from a broad range of topics related to micro/nanostructured materials aimed at future energy resources, low emission energy conversion, energy storage, energy efficiency improvement, air emission control, air monitoring, air cleaning, and many other related applications. This Special Issue provides an opportunity and example for the international community to discuss how to actively address the energy and environment issues that we are facing.

3D Printing of Metals

Author:
ISBN: 9783039213412 / 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Superhydrophobic Coatings for Corrosion and Tribology

Authors: ---
ISBN: 9783039217847 / 9783039217854 Year: Pages: 166 DOI: 10.3390/books978-3-03921-785-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.

Ceramic Conductors

Authors: ---
ISBN: 9783038979562 / 9783038979579 Year: Pages: 184 DOI: 10.3390/books978-3-03897-957-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue of Crystals contains papers focusing on various properties of conducting ceramics. Multiple aspects of both the research and application of this group of materials have been addressed. Conducting ceramics are the wide group of mostly oxide materials which play crucial roles in various technical applications, especially in the context of the harvesting and storage of energy. Without ion-conducting oxides, such as yttria-stabilized zirconia, doped ceria devices such as solid oxide fuel cells would not exist, not to mention the wide group of other ion conductors which can be applied in batteries or even electrolyzers, besides fuel cells. The works published in this Special Issue tackle experimental results as well as general theoretical trends in the field of ceramic conductors, or electroceramics, as it is often referred to.

Listing 1 - 10 of 20 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (19)

KIT Scientific Publishing (1)


License

CC by-nc-nd (19)

CC by-sa (1)


Language

eng (19)

english (1)


Year
From To Submit

2019 (20)

-->