Search results: Found 6

Listing 1 - 6 of 6
Sort by
Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Open-Source Electronics Platforms

Author:
ISBN: 9783038979722 9783038979739 Year: Pages: 262 DOI: 10.3390/books978-3-03897-973-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.

Keywords

human-computer interface (HCI) --- electrooculogram (EOG) --- electromyogram (EMG) --- modified sliding window algorithm --- piecewise linear approximation (PLA) --- support vector regression --- eye tracking --- blockchain --- ontology --- context --- cyber-physical systems --- robotics --- interaction --- coalition --- individual management of livestock --- momentum data sensing --- remote sensing platform --- sensor networks --- technology convergence --- industry 4.0 --- distributed measurement systems --- automation networks --- node-RED --- cloud computing --- OPC UA --- hardware trojan taxonomy --- thermal imaging --- side channel analysis --- infrared --- FPGA --- Internet of Things --- wireless sensor networks --- Cloud of Things --- virtual sensor --- sensor detection --- smart cities --- Internet of Things --- Raspberry Pi --- BeagleBoard --- Arduino --- Internet of Things --- open hardware --- smart farming --- teaching robotics --- science teaching --- STEM --- robotic tool --- Python --- Raspberry Pi --- PiCamera --- vision system --- service learning --- robotics --- open platform --- automated vehicle --- EPICS --- open-source platform --- visual algorithms --- digital signal controllers --- embedded systems education --- dsPIC --- Java --- smart converter --- maximum power point tracking (MPPT) --- photovoltaic (PV) system --- Field Programmable Gate Array (FPGA) --- Digital Signal Processor (DSP) --- interleaved --- DC/DC converter --- distributed energy resource --- n/a

Control and Nonlinear Dynamics on Energy Conversion Systems

Authors: ---
ISBN: 9783039211104 9783039211111 Year: Pages: 438 DOI: 10.3390/books978-3-03921-111-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.

Keywords

data-driven --- prediction --- neural network --- air-handling unit (AHU) --- supply air temperature --- pulverizing system --- soft sensor --- inferential control --- moving horizon estimation --- multi-model predictive control --- micro-grid --- droop control --- virtual impedance --- harmonic suppression --- power quality --- combined heat and power unit --- two-stage bypass --- dynamic model --- coordinated control system --- predictive control --- decoupling control --- power conversion --- model–plant mismatches --- disturbance observer --- performance recovery --- offset-free --- electrical machine --- electromagnetic vibration --- multiphysics --- rotor dynamics --- air gap eccentricity --- calculation method --- magnetic saturation --- corrugated pipe --- whistling noise --- Helmholtz number --- excited modes --- switched reluctance generator --- capacitance current pulse train control --- voltage ripple --- capacitance current --- feedback coefficient --- distributed architecture --- maximum power point tracking --- sliding mode control --- overvoltage --- permanent magnet synchronous motor (PMSM) --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- single artificial neuron (SAN) --- reinforcement learning (RL) --- goal representation heuristic dynamic programming (GrHDP) --- adaptive dynamic programming (ADP) --- sliding mode observer (SMO) --- permanent magnet synchronous motor (PMSM) --- extended back electromotive force (EEMF) --- position sensorless --- bridgeless converter --- discontinuous conduction mode (DCM) --- high step-up voltage gain --- power factor correction (PFC) --- space mechanism --- multi-clearance --- nonlinear dynamic model --- planetary gears --- vibration characteristics --- new step-up converter --- ultrahigh voltage conversion ratio --- small-signal model --- average-current mode control --- slope compensation --- monodromy matrix --- current mode control --- boost-flyback converter --- explosion-magnetic generator --- plasma accelerator --- current-pulse formation --- DC-DC buck converter --- contraction analysis --- global stability --- matrix norm --- DC micro grid --- efficiency optimization --- variable bus voltage MG --- variable switching frequency DC-DC converters --- centralized vs. decentralized control --- local vs. global optimization --- buck converter --- DC motor --- bifurcations in control parameter --- sliding control --- zero average dynamics --- fixed-point inducting control --- DC-DC converters --- quadratic boost --- maximum power point tracking (MPPT) --- nonlinear dynamics --- subharmonic oscillations --- photovoltaic (PV) --- steel catenary riser --- rigid body rotation --- wave --- the load of suspension point in the z direction --- Cable3D

Sustainable Energy Systems: From Primary to End-Use

Authors: --- ---
ISBN: 9783039210961 9783039210978 Year: Pages: 314 DOI: 10.3390/books978-3-03921-097-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.

Keywords

Active Disturbance Rejection Control --- Probabilistic Robustness --- Monte Carlo --- secondary air regulation --- areal grey relational analysis --- fuzzy rough set --- game theory --- AHP --- uncertainty analysis --- coal-fired power unit --- renewable energy --- biomass --- torrefaction --- grindability --- rotary reactor --- generation system scheduling --- integrated model --- basic plan for long-term electricity supply and demand --- forecasting model for electricity demand --- biomass --- Pinus pinaster --- fuel --- heating value --- fuelwood value index --- energy density --- ash recovery --- peach --- Energy Life-Cycle Assessment --- post-harvest --- fuzzy logic control --- artificial neural networks control --- tidal stream generator --- swell effect disturbance --- doubly fed induction generator --- maximum power point tracking --- capacity investment --- market power --- wind resources --- dynamic planning --- stochastic approach --- levelized cost of energy --- photovoltaic with energy storage system --- HOMER simulation --- LCOE comparison --- sensitivity analysis --- transient impact --- renewable energy source penetration --- power system stability --- robust optimization --- renewable energy --- flexibility --- deficit --- uncertainty --- flexible resource --- energy storage systems --- active power harmonics filter --- electrostatic devices --- hysteresis switching --- op-amp --- power electronics --- power supply reliability --- electricity --- manufacturing industry --- choice experiment --- willingness to pay --- nexus concept --- energy modelling --- resource efficiency --- renewable energy --- low-carbon economy --- forecasting --- multilayer perception --- photovoltaic --- sustainable energy --- pseudo-Huber loss --- energy from biomass --- textile industrial sector --- alternative energy --- SWOT analysis --- energy costs --- Internet of Things --- thermodynamic cycle concepts --- sustainability --- modified cycle concepts --- efficiency --- energy systems --- renewable energies --- wind power plants --- hollow rollers --- large bearings

PV System Design and Performance

Author:
ISBN: 9783039216222 9783039216239 Year: Pages: 360 DOI: 10.3390/books978-3-03921-623-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.

Keywords

floating PV generation structure --- fiber reinforced polymeric plastic (FRP) --- pultruded FRP --- sheet molding compound FRP --- structural design --- mooring system --- photovoltaic plants --- software development --- performance analysis --- loss analysis --- graphical malfunction detection --- fuzzy logic controller --- maximum power point tracking (MPPT) --- dc-dc converter --- photovoltaic system --- photovoltaic system --- modeling --- stability analysis --- grid-connected --- photovoltaics --- modules --- shade resilience --- buck converter --- module architecture --- PV array --- FCM algorithm --- cluster analysis --- fault diagnosis --- membership algorithm --- solar energy --- photovoltaic module performance --- organic soiling --- Scanning Electron Microscopy (SEM) --- floating PV systems (FPV) --- floating PV module (FPVM) --- ANOVA --- Bartlett’s test --- Hartigan’s dip test --- Jarque-Bera’s test --- Kruskal-Wallis’ test --- Mood’s Median test --- residential buildings --- Tukey’s test --- urban context --- solar cells --- AC parameters --- underdamped oscillation --- impedance spectroscopy --- partial shading --- photo-generated current --- photovoltaic performance --- maximum power point --- image processing --- photovoltaic (PV) systems monitoring --- malfunction detection --- data analysis --- PV systems --- cluster analysis --- failure detection --- ageing and degradation of PV-modules --- performance analysis --- UV-fluorescence imaging --- photovoltaic modeling --- parameter estimation --- optimization problem --- metaheuristic --- opposition-based learning --- quasi-opposition based learning --- improved cuckoo search algorithm --- PV energy performance --- PV thermal performance --- thermal interaction --- conventional roof membrane --- vegetated/green roof --- Renewable Energy --- PV systems --- forecast --- energy --- simulation --- silicon --- photovoltaics --- modules --- electroluminescence --- defects --- cracks --- performance ratio --- annual yield --- GIS --- PV system --- spatial analyses --- performance ratio --- GIS --- PV module --- system --- population density --- urban compactness --- solar farm --- photovoltaics --- reactive power support --- STATCOM --- technical costs --- photovoltaic systems --- reliability --- real data --- energy yield --- fault tree analysis --- failure mode and effect analysis --- availability --- failure rates

Intelligent Control in Energy Systems

Author:
ISBN: 9783039214150 9783039214167 Year: Pages: 508 DOI: 10.3390/books978-3-03921-416-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust ?-synthesis for microgrids, and neuro-fuzzy systems in energy storage.

Keywords

lithium-ion battery pack --- soft internal short circuit --- model-based fault detection --- battery safety --- internal short circuit resistance --- load frequency control --- model uncertainty --- ?-synthesis --- differential evolution --- decision tree --- preventive control --- Fault Ride Through Capability --- doubly-fed induction generator --- ancillary service --- frequency regulation --- demand response --- commercial/residential buildings --- HVAC systems --- model predictive control --- rule-based control --- position control --- static friction --- exhaust gas recirculation (EGR) valve system --- automotive application --- hybrid electric vehicle --- compound structured permanent-magnet motor --- energy management strategy --- instantaneous optimization minimum power loss --- back propagation (BP) neural network --- power transformer winding --- vibration characteristics --- multiphysical field analysis --- short-circuit experiment --- winding-fault characteristics --- occupancy model --- occupancy-based control --- model predictive control --- energy efficiency --- building climate control --- solar monitoring system --- photovoltaic array --- energy management --- demand side management --- operation limit violations --- probabilistic power flow --- network sensitivity --- neural networks --- railway --- high-speed railway --- neutral section --- medium voltage --- thyristor --- AC static switch --- adaptive backstepping --- nonlinear power systems --- sliding mode control --- error compensation --- ?-class function --- energy internet --- multi-energy complementary --- integrated energy systems --- distribution network planning --- electric power consumption --- multi-step forecasting --- long short term memory --- convolutional neural network --- system identification --- parameter estimation --- system modelling --- model reduction --- polynomial expansion --- orthogonal least square --- industrial process --- electric vehicle --- battery packs --- active balance --- model predictive control --- hierarchical Petri nets --- urban microgrids --- phase-load balancing --- fuzzy logic controller --- MPPT: maximum power point tracking --- photovoltaic system --- step-up boost converter --- proton exchange membrane fuel cell --- four phases interleaved boost converter --- neural network controller --- AC-DC converters --- bridgeless SEPIC PFC converter --- repetitive controller --- current distortion --- current controller design --- stochastic power system operating point drift --- wind integrated power system --- power oscillations --- adaptive damping control --- continuous voltage control --- multiple-point control --- interaction minimization --- pilot point --- adjacent areas --- ANFIS --- artificial neural network --- fuzzy --- small scale compressed air energy storage (SS-CAES) --- voltage controlling --- electric meter --- error estimation --- line loss --- RLS --- double forgetting factors --- hybrid power plant --- control architecture --- coordination of reserves --- frequency support --- frequency control dead band --- fast frequency response --- frequency containment reserve --- line switching --- voltage violations --- three-stage --- fractional order fuzzy PID controller --- neural network algorithm --- PEM fuel cell --- MPPT operation --- sensitivity analysis --- intelligent control --- artificial intelligence --- energy management system --- smart micro-grid --- energy systems --- intelligent buildings --- forecasting --- multi-agent control --- optimization

Listing 1 - 6 of 6
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (6)


License

CC by-nc-nd (6)


Language

english (6)


Year
From To Submit

2019 (6)