Search results: Found 24

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Mesothelioma Heterogeneity: Potential Mechanisms

Author:
ISBN: 9783038974734 9783038974741 Year: Pages: 204 DOI: 10.3390/books978-3-03897-474-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Oncology
Added to DOAB on : 2019-01-11 11:18:51
License:

Loading...
Export citation

Choose an application

Abstract

Mesothelioma is a rare aggressive cancer that develops from the mesothelium. Recent molecular analyses have defined four different types of mesothelioma based on gene expression and two major molecularly-defined groups based on prognosis. In this volume, potential mechanisms causing this heterogeneity are explored. The different chapters include heterogeneity learned from experimental animal models in NF2/Hippo pathway signaling, stem cell signaling pathways, the tumor microenvironment, and micro RNA secretome. Novel aspects deserving attention such as the implication of long, non-coding RNA in disease heterogeneity are described. The volume also includes the description of tools useful to address some specific questions such as an assessment of the copy number variations of two tumor suppressors frequently mutated in mesothelioma or an investigation of Macrophage Inhibition Factor signaling in mesothelioma.

Plant Mitochondria

Author:
ISBN: 9783038975502 9783038975519 Year: Pages: 400 DOI: 10.3390/books978-3-03897-551-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Plant Sciences
Added to DOAB on : 2019-02-19 09:53:15
License:

Loading...
Export citation

Choose an application

Abstract

The primary function of mitochondria is respiration, where the catabolism of substrates is coupled to ATP synthesis via oxidative phosphorylation. In plants, mitochondrial composition is relatively complex and flexible and has specific pathways to support photosynthetic processes in illuminated leaves. Plant mitochondria also play important roles in a variety of cellular processes associated with carbon, nitrogen, phosphorus, and sulfur metabolism. Research on plant mitochondria has rapidly developed in the last few decades with the availability of the genome sequences for a wide range of model and crop plants. Recent prominent themes in plant mitochondrial research include linking mitochondrial composition to environmental stress responses, and how this oxidative stress impacts on the plant mitochondrial function. Similarly, interest in the signaling capacity of mitochondria, the role of reactive oxygen species, and retrograde and anterograde signaling has revealed the transcriptional changes of stress responsive genes as a framework to define specific signals emanating to and from the mitochondrion. There has also been considerable interest in the unique RNA metabolic processes in plant mitochondria, including RNA transcription, RNA editing, the splicing of group I and group II introns, and RNA degradation and translation. Despite their identification more than 100 years ago, plant mitochondria remain a significant area of research in the plant sciences. This Special Issue, “Plant Mitochondria”, will cover a selection of recent research topics and timely review articles in the field of plant mitochondrial research.

Biotic and Abiotic Stress Responses in Crop Plants

Authors: ---
ISBN: 9783038974635 9783038974642 Year: Pages: 252 DOI: 10.3390/books978-3-03897-464-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Plant Sciences --- Genetics --- Biology
Added to DOAB on : 2019-01-16 10:24:11
License:

Loading...
Export citation

Choose an application

Abstract

While the demand for crop products continues to increase strongly, agricultural productivity is threatened by various stress factors, often associated with global warming. To sustain and improve yield, it is necessary to understand how plants respond to various stresses, and to use the generated knowledge in modern breeding programs. Most knowledge regarding the molecular mechanisms associated with stress responses has been obtained from investigations using the model plant Arabidopsis thaliana. Stress hormones, such as abscisic acid, jasmonic acid, and salicylic acid, have been shown to play key roles in defense responses against abiotic and biotic stresses. More recently, evidence that growth-regulating plant hormones are also involved in stress responses has been accumulating. Epigenetic regulation at the DNA and histone level, and gene regulation by small non-coding RNAs appear to be important as well. Many approaches have used mutant screens and next generation sequencing approaches to identify key players and mechanisms how plants respond to their environment. However, it is often unclear to which extent the elucidated mechanisms also operate in crops.This Special Issue Book, therefore, aims to close this gap and contains a number of contributions from labs that work both, on Arabidopsis and crops. The book includes contributions reporting how crop plant species respond to various abiotic stresses, such as drought, heat, cold, flooding, and salinity, as well as biotic stimuli during microbial infections. It contains reviews, opinions, perspectives, and original articles, and its focus is on our molecular understanding of biotic and abiotic stress responses in crops, highlighting, among other aspects, the role of stress hormones, secondary metabolites, signaling mechanisms, and changes in gene expression patterns and their regulation. Approaches and ideas to achieve stress tolerance and to maintain yield stability of agricultural crops during stress periods can be found in most chapters. These include also perspectives on how knowledge from model plants can be utilized to facilitate crop-plant breeding and biotechnology.

Calcium Signaling in Human Health and Diseases

Author:
ISBN: 9783038975373 9783038975380 Year: Pages: 462 DOI: 10.3390/books978-3-03897-538-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Physiology --- Biochemistry --- Internal medicine --- Biology
Added to DOAB on : 2019-01-21 10:12:01
License:

Loading...
Export citation

Choose an application

Abstract

Intracellular Ca2+ signaling is witnessing an amazing resurgence of interest. In addition to traditional Ca2+ aficionados, an astonishing (and growing) number of colleagues from all around the world have started to devote a large part of their research to gain insights into the role of Ca2+ signaling in health and disease. This is why calcium ions interact with virtually every signal transduction pathway not only in mammalian cells, but also across the phylogenetic tree, thereby, driving or modulating most, if not all, cellular functions, ranging from fertilization to apoptosis, passing through learning and memory, cardiac contractility, and immune response. This book gathers a collection of original research articles and reviews by a number of renowned experts who aim to present the state of the art of many pathophysiological aspects of intracellular Ca2+ signaling, such as embryonic development, immune response, extracellular Ca2+ signaling, neoplastic transformation, muscle hypertrophy, pulmonary inflammation, and P2X receptor gating.

Stem Cell and Biologic Scaffold Engineering

Author:
ISBN: 9783039214976 9783039214983 Year: Pages: 110 DOI: 10.3390/books978-3-03921-498-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.

Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function

Authors: ---
ISBN: 9783039216888 9783039216895 Year: Pages: 240 DOI: 10.3390/books978-3-03921-689-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.

Mechanisms of Adiponectin Action

Author:
ISBN: 9783039212453 9783039212460 Year: Pages: 222 DOI: 10.3390/books978-3-03921-246-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The adipokine adiponectin is very concentrated in plasma, and decreased levels of adiponectin are associated with pathological conditions such as obesity, diabetes, cardiovascular diseases, and metabolic syndrome. When produced in its full-length form, adiponectin self-associates to generate multimeric complexes. The full-length form of adiponectin can be cleaved by the globular form of elastase that is produced locally, and the resulting biological effects are exerted in a paracrine or autocrine manner. The different forms of adiponectin bind to specific receptors consisting of two G-protein-independent, seven-transmembrane-spanning receptors, called AdipoR1 and AdipoR2, while T-cadherin has been identified as a potential receptor for high molecular weight complexes of adiponectin. Adiponectin exerts a key role in cellular metabolism, regulating glucose levels as well as fatty acid breakdown. However, its biological effects are heterogeneous, involving multiple target tissues. The Special Issue “Mechanisms of Adiponectin Action” highlights the pleiotropic role of this hormone through 3 research articles and 7 reviews. These papers focus on the recent knowledge regarding adiponectin in different target tissues, both in healthy and in diseased conditions.

Aging and Age-related Disorders: From Molecular Mechanisms to Therapies

Author:
ISBN: 9783039213559 9783039213566 Year: Pages: 322 DOI: 10.3390/books978-3-03921-356-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Aging of unicellular and multicellular eukaryotic organisms is a convoluted biological phenomenon, which is manifested as an age-related functional decline caused by progressive dysregulation of certain cellular and organismal processes. Many chronic diseases are associated with human aging. These aging-associated diseases include cardiovascular diseases, chronic obstructive pulmonary disease, chronic kidney disease, diabetes, osteoarthritis, osteoporosis, sarcopenia, stroke, neurodegenerative diseases (including Parkinson’s, Alzheimer’s, and Huntington’s diseases), and many forms of cancer. Studies in yeast, roundworms, fruit flies, fishes, mice, primates, and humans have provided evidence that the major aspects and basic mechanisms of aging and aging-associated pathology are conserved across phyla. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms, diagnostics, and therapies and diseases of aging. Fifteen original research and review articles in this Special Issue provide important insights into how various genetic, dietary, and pharmacological interventions can affect certain longevity-defining cellular and organismal processes to delay aging and postpone the onset of age-related pathologies in evolutionarily diverse organisms. These articles outline the most important unanswered questions and directions for future research in the vibrant and rapidly evolving fields of mechanisms of biological aging, aging-associated diseases, and aging-delaying therapies.

mTOR in Human Diseases

Author:
ISBN: 9783039210602 9783039210619 Year: Pages: 480 DOI: 10.3390/books978-3-03921-061-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The mechanistic target of rapamycin (mTOR) is a major signaling intermediary that coordinates favorable environmental conditions with cell growth. Indeed, as part of two functionally distinct protein complexes, named mTORC1 and mTORC2, mTOR regulates a variety of cellular processes, including protein, lipid, and nucleotide synthesis, as well as autophagy. Over the last two decades, major molecular advances have been made in mTOR signaling and have revealed the complexity of the events implicated in mTOR function and regulation. In parallel, the role of mTOR in diverse pathological conditions has also been identified, including in cancer, hamartoma, neurological, and metabolic diseases. Through a series of articles, this book focuses on the role played by mTOR in cellular processes, metabolism in particular, and highlights a panel of human diseases for which mTOR inhibition provides or might provide benefits. It also addresses future studies needed to further characterize the role of mTOR in selected disorders, which will help design novel therapeutic approaches. It is therefore intended for everyone who has an interest in mTOR biology and its application in human pathologies.

Keywords

acute myeloid leukemia --- metabolism --- mTOR --- PI3K --- phosphorylation --- epithelial to mesenchymal transition --- mTOR inhibitor --- pulmonary fibrosis --- transcriptomics --- miRNome --- everolimus --- mTOR --- thyroid cancer --- sodium iodide symporter (NIS)/SLC5A5 --- dopamine receptor --- autophagy --- AKT --- mTOR --- AMPK --- mTOR --- Medulloblastoma --- MBSCs --- mTOR --- T-cell acute lymphoblastic leukemia --- targeted therapy --- combination therapy --- mTOR --- metabolic diseases --- glucose and lipid metabolism --- anesthesia --- neurotoxicity --- synapse --- mTOR --- neurodevelopment --- mTOR --- rapamycin --- autophagy --- protein aggregation --- methamphetamine --- schizophrenia --- tumour cachexia --- mTOR --- signalling --- metabolism --- proteolysis --- lipolysis --- mTOR --- mTORC1 --- mTORC2 --- rapamycin --- rapalogues --- rapalogs --- mTOR inhibitors --- senescence --- ageing --- aging --- cancer --- neurodegeneration --- immunosenescence --- senolytics --- biomarkers --- leukemia --- cell signaling --- metabolism --- apoptosis --- miRNA --- mTOR inhibitors --- mTOR --- tumor microenvironment --- angiogenesis --- immunotherapy --- fluid shear stress --- melatonin --- chloral hydrate --- nocodazole --- MC3T3-E1 cells --- primary cilia --- mTOR complex --- metabolic reprogramming --- cancer --- microenvironment --- nutrient sensor --- oral cavity squamous cell carcinoma (OSCC) --- NVP-BEZ235 --- mTOR --- p70S6K --- mTOR --- advanced biliary tract cancers --- mTOR --- NGS --- illumina --- IonTorrent --- eIFs --- mTOR --- autophagy --- Parkinson’s disease --- mTOR --- PI3K --- cancer --- inhibitor --- therapy --- mTOR --- laminopathies --- lamin A/C --- Emery-Dreifuss muscular dystrophy (EDMD) --- Hutchinson-Gilford progeria syndrome (HGPS) --- autophagy --- cellular signaling --- metabolism --- bone remodeling --- ageing --- mTOR --- fructose --- glucose --- liver --- lipid metabolism --- gluconeogenesis --- Alzheimer’s disease --- autophagy --- mTOR signal pathway --- physical activity --- microRNA --- mTOR --- spermatogenesis --- male fertility --- Sertoli cells --- n/a

Effects of Mycotoxins on the Intestine

Authors: --- ---
ISBN: 9783038977827 9783038977834 Year: Pages: 262 DOI: 10.3390/books978-3-03897-783-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-05-09 17:16:14
License:

Loading...
Export citation

Choose an application

Abstract

Mycotoxins are secondary metabolites produced by several fungal species. They can contaminate human food and animal feed, and have been a threat for thousands of years. The gastrointestinal tract is the first target when ingesting mycotoxin-contaminated food or feed. As unlikely as it sounds, the investigations concerning the effects of mycotoxins on the intestine are still in their early stages. This book gathers the most recent advances related to the characterization of the intestinal toxicity of mycotoxins. Substantial data assembled on the damage caused to a number of histological structures and functions of the intestine remove any remaining doubt about this organ being a primary target for the toxicity of mycotoxins. An interesting overview of the detrimental effects of mycotoxins on the gut-hosted microbiota&mdash;now regarded as a fully-fledged organ associated with the gut&mdash;is also given. Finally, outstanding contributions in this book address questions relating to the suitability of current regulations to protect against alterations of the intestine, and to the efficacy assessment of new detoxification strategies using the intestinal toxicity of mycotoxins as a relevant endpoint.

Keywords

mice --- aflatoxin B1 --- intestinal bacterial flora --- response --- Clostridium sp. WJ06 --- deoxynivalenol --- pig --- intestinal morphology --- microbial diversity --- aflatoxin M1 --- ochratoxin A --- intestinal epithelial cells --- tight junction --- permeability --- ileum --- jejunum --- deoxynivalenol --- piglet --- contaminated feed --- tight junction --- aflatoxin B1 --- small intestine --- histopathological lesions --- ultrastructural changes --- toll-like receptors --- T-2 toxin --- enteric nervous system --- pig --- vasoactive intestinal polypeptide --- mycotoxins --- zearalenone --- deoxynivalenol --- histology --- ultrastructure --- large intestine --- pig --- Claviceps --- liver --- digestive tract --- mycotoxin --- sclerotia --- ergot alkaloids --- toxicity --- deoxynivalenol --- Saccharomyces cerevisiae boulardii CNCM I-1079 --- intestine --- transcriptome --- inflammation --- oxidative stress --- lipid metabolism --- fumonisin --- microbiota --- pigs --- MiSeq 16S rDNA sequencing --- intestinal microbiota --- hydrogen-rich water --- lactulose --- Fusarium mycotoxins --- piglets --- functional oligosaccharides --- mycotoxins --- swine --- explant technique --- intestinal morphology --- goblet cells --- deoxynivalenol --- zearalenone --- pig --- colon microbiota --- Lactobacillus --- detoxification --- zearalenone --- doses --- caecal water --- genotoxicity --- pre-pubertal gilts --- atlantic salmon --- deoxynivalenol --- feed --- intestine --- PCR --- proliferating cell nuclear antigen --- suppressor of cytokine signaling --- tight junctions --- Zearalenone --- N-acetylcysteine --- SIEC02 cells --- Mitochondrial apoptosis --- n/a

Listing 1 - 10 of 24 << page
of 3
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (24)


License

CC by-nc-nd (24)


Language

english (24)


Year
From To Submit

2019 (24)