Search results: Found 11

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Manual of Digital Earth

Authors: --- ---
ISBN: 9789813299153 Year: Pages: 852 DOI: 10.1007/978-981-32-9915-3 Language: English
Publisher: Springer Nature
Subject: Computer Science --- Science (General) --- Environmental Sciences --- Geography --- Geology --- Earth Sciences
Added to DOAB on : 2020-02-04 11:21:22
License:

Loading...
Export citation

Choose an application

Abstract

This open access book offers a summary of the development of Digital Earth over the past twenty years. By reviewing the initial vision of Digital Earth, the evolution of that vision, the relevant key technologies, and the role of Digital Earth in helping people respond to global challenges, this publication reveals how and why Digital Earth is becoming vital for acquiring, processing, analysing and mining the rapidly growing volume of global data sets about the Earth. The main aspects of Digital Earth covered here include: Digital Earth platforms, remote sensing and navigation satellites, processing and visualizing geospatial information, geospatial information infrastructures, big data and cloud computing, transformation and zooming, artificial intelligence, Internet of Things, and social media. Moreover, the book covers in detail the multi-layered/multi-faceted roles of Digital Earth in response to sustainable development goals, climate changes, and mitigating disasters, the applications of Digital Earth (such as digital city and digital heritage), the citizen science in support of Digital Earth, the economic value of Digital Earth, and so on. This book also reviews the regional and national development of Digital Earth around the world, and discusses the role and effect of education and ethics. Lastly, it concludes with a summary of the challenges and forecasts the future trends of Digital Earth. By sharing case studies and a broad range of general and scientific insights into the science and technology of Digital Earth, this book offers an essential introduction for an ever-growing international audience.

Applications of Photogrammetry for Environmental Research

Authors: ---
ISBN: 9783039281800 9783039281817 Year: Pages: 154 DOI: 10.3390/books978-3-03928-181-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

The book presents a collection of papers focused on recent progress in key areas of photogrammetry for environmental research. Applications oriented to the understanding of natural phenomena and quantitative processes using dataset from photogrammetry (from satellite to unmanned aerial vehicle images) and terrestrial laser scanning, also by a diachronic approach, are reported. The book covers topics of interest of many disciplines from geography, geomorphology, engineering geology, geotechnology, including landscape description and coastal studies. Mains issues faced by the book are related to applications on coastal monitoring, using multitemporal aerial images, and investigations on geomorphological hazard by the joint use of proximal photogrammetry, terrestrial and aerial laser scanning aimed to the reconstruction of detailed surface topography and successive 2D/3D numerical simulations for rock slope stability analyses. Results reported in the book bring into evidence the fundamental role of multitemporal surveys and reliable reconstruction of morphologies from photogrammetry and laser scanning as support to environmental researches.

Digital Transformation of the Design, Construction and Management Processes of the Built Environment

Authors: --- ---
Book Series: Research for Development ISBN: 9783030335700 Year: Pages: 400 DOI: 10.1007/978-3-030-33570-0 Language: English
Publisher: Springer Nature
Subject: Computer Science --- Agriculture (General) --- Geography
Added to DOAB on : 2020-02-04 11:21:09
License:

Loading...
Export citation

Choose an application

Abstract

This open access book focuses on the development of methods, interoperable and integrated ICT tools, and survey techniques for optimal management of the building process. The construction sector is facing an increasing demand for major innovations in terms of digital dematerialization and technologies such as the Internet of Things, big data, advanced manufacturing, robotics, 3D printing, blockchain technologies and artificial intelligence. The demand for simplification and transparency in information management and for the rationalization and optimization of very fragmented and splintered processes is a key driver for digitization. The book describes the contribution of the ABC Department of the Polytechnic University of Milan (Politecnico di Milano) to R&D activities regarding methods and ICT tools for the interoperable management of the different phases of the building process, including design, construction, and management. Informative case studies complement the theoretical discussion. The book will be of interest to all stakeholders in the building process – owners, designers, constructors, and faculty managers – as well as the research sector.

Remote Sensing Applications for Agriculture and Crop Modelling

Author:
ISBN: 9783039282265 9783039282272 Year: Pages: 308 DOI: 10.3390/books978-3-03928-227-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:08
License:

Loading...
Export citation

Choose an application

Abstract

Crop models and remote sensing techniques have been combined and applied in agriculture and crop estimation on local and regional scales, or worldwide, based on the simultaneous development of crop models and remote sensing. The literature shows that many new remote sensing sensors and valuable methods have been developed for the retrieval of canopy state variables and soil properties from remote sensing data for assimilating the retrieved variables into crop models. At the same time, remote sensing has been used in a staggering number of applications for agriculture. This book sets the context for remote sensing and modelling for agricultural systems as a mean to minimize the environmental impact, while increasing production and productivity. The eighteen papers published in this Special Issue, although not representative of all the work carried out in the field of Remote Sensing for agriculture and crop modeling,

Keywords

crop residue management --- remote sensing --- satellite images --- hyperspectral sensor --- vegetation index --- yield monitoring --- remote sensing --- proximal sensing --- crop modeling --- soil --- plant --- management zone --- spatial variability --- temporal variability --- precision agriculture --- Á Trous algorithm --- conservation agriculture --- crop inventory --- remote sensing --- spectral-weight variations in fused images --- soil stoichiometry --- land use change --- soil organic carbon --- nitrogen --- Tarim Basin --- SPAD --- leaf nitrogen concentration --- nitrogen nutrition index --- grain yield --- dynamic model --- wheat --- disease --- yield --- septoria tritici blotch --- leaf area index --- crop modelling --- decision support system for agrotechnology transfer (DSSAT) --- Cropsim-CERES Wheat --- sorghum biomass --- prediction modeling --- machine learning --- fAPAR --- Sentinel-2 satellite imagery --- big data technology --- remote sensing --- UAV --- vegetation indices --- relative frequencies --- yield --- precision agriculture --- cultivars --- crop growth model --- data assimilation --- Leaf Area Index --- Sentinel-2 --- EPIC model --- yield estimation --- NDVI --- remote sensing --- GIS --- precision farming --- variable rate technology --- yield mapping --- protein content --- wheat --- canopy temperature depression --- NDVI --- RGB images --- grain yield --- ?13C --- UAV chemical application --- droplet drift --- flat-fan atomizer --- simulation analysis --- control variables --- agricultural land-cover --- multi-spectral --- generalized model --- machine learning --- crop type mapping --- Integrated Administration and Control System --- remote sensing --- hydroponic --- vegetable monitoring --- crop production --- spectral simulation --- hyperspectral data --- n/a --- fractional cover --- irrigation --- satellite --- crop simulation model --- AquaCrop --- yield mapping --- remote sensing --- durum wheat --- precision agriculture --- large cardamom --- remote sensing --- species modelling --- habitat assessment --- climate change

Remote Sensing Technology Applications in Forestry and REDD+

Authors: --- --- ---
ISBN: 9783039284702 9783039284719 Year: Pages: 244 DOI: 10.3390/books978-3-03928-471-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Environmental Technology
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Advances in close-range and remote sensing technologies are driving innovations in forest resource assessments and monitoring on varying scales. Data acquired with airborne and spaceborne platforms provide high(er) spatial resolution, more frequent coverage, and more spectral information. Recent developments in ground-based sensors have advanced 3D measurements, low-cost permanent systems, and community-based monitoring of forests. The UNFCCC REDD+ mechanism has advanced the remote sensing community and the development of forest geospatial products that can be used by countries for the international reporting and national forest monitoring. However, an urgent need remains to better understand the options and limitations of remote and close-range sensing techniques in the field of forest degradation and forest change. Therefore, we invite scientists working on remote sensing technologies, close-range sensing, and field data to contribute to this Special Issue. Topics of interest include: (1) novel remote sensing applications that can meet the needs of forest resource information and REDD+ MRV, (2) case studies of applying remote sensing data for REDD+ MRV, (3) timeseries algorithms and methodologies for forest resource assessment on different spatial scales varying from the tree to the national level, and (4) novel close-range sensing applications that can support sustainable forestry and REDD+ MRV. We particularly welcome submissions on data fusion.

Keywords

sentinel imagery --- above-ground biomass --- predictive mapping --- machine learning --- geographically weighted regression --- canopy cover (CC) --- spectral --- texture --- digital hemispherical photograph (DHP) --- random forest (RF) --- gray level co-occurrence matrix (GLCM) --- forest inventory --- LiDAR --- tall trees --- overstory trees --- tree mapping --- crown delineation --- aboveground biomass --- Landsat --- random forest --- topography --- human activity --- aboveground biomass estimation --- remote sensing --- crown density --- low-accuracy estimation --- model comparison --- old-growth forest --- multispectral satellite imagery --- random forest --- forest classification --- remote sensing --- forestry --- phenology --- silviculture --- forest growing stock volume (GSV) --- full polarimetric SAR --- subtropical forest --- topographic effects --- environment effects --- geographic information system --- support vector machine --- random forest --- ensemble model --- hazard mapping --- 3D tree modelling --- aboveground biomass estimation --- destructive sampling --- Guyana --- LiDAR --- local tree allometry --- model evaluation --- quantitative structural model --- Pinus massoniana --- specific leaf area --- leaf area --- terrestrial laser scanning --- voxelization --- forest canopy --- REDD+ --- Cameroon --- reference level --- deforestation --- agriculture --- forest baseline --- airborne laser scanning --- terrestrial laser scanning --- remote sensing --- REDD+ --- forestry

Remote Sensing for Target Object Detection and Identification

Authors: --- ---
ISBN: 9783039283323 9783039283330 Year: Pages: 336 DOI: 10.3390/books978-3-03928-333-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Target object detection and identification are among the primary uses for a remote sensing system. This is crucial in several fields, including environmental and urban monitoring, hazard and disaster management, and defense and military. In recent years, these analyses have used the tremendous amount of data acquired by sensors mounted on satellite, airborne, and unmanned aerial vehicle (UAV) platforms. This book promotes papers exploiting different remote sensing data for target object detection and identification, such as synthetic aperture radar (SAR) imaging and multispectral and hyperspectral imaging. Several cutting-edge contributions, which provide examples of how to select of a technology or another depending on the specific application, will be detailed.

Keywords

anomaly detection --- hyperspectral imagery --- low-rank representation --- dictionary construction --- HSI reconstruction --- sparse coding --- adaptive weighting --- infrared small target detection --- local prior analysis --- nonconvex tensor robust principle component analysis --- partial sum of the tensor nuclear norm --- low rank sparse decomposition --- Lp-norm constraint --- non-convex optimization --- alternating direction method of multipliers --- infrared small target detection --- convolutional neural networks (CNNs) --- object detection --- remote sensing images --- contextual information --- part-based --- multi-model --- very-high-resolution (VHR) remote sensing imagery --- object detection --- multi-scale pyramidal features --- multi-scale strategies --- oil tank detection --- unsupervised saliency model --- Color Markov Chain --- bottom-up and top-down --- hazard prevention --- flood hazard --- hidden danger identification --- tower failure --- vehicle detection --- object matching --- superpixel segmentation --- unmanned aerial vehicle --- remote sensing imagery --- thermal infrared target tracking --- semantic features --- mask sparse representation --- particle filter framework --- ADMM --- satellite videos --- region proposals --- convolutional neural networks --- tiny and dim target detection --- component mixture model --- object detection --- remote sensing image --- deep learning --- convolutional neural networks (CNNs) --- hardware architecture --- processor --- ground-based detection --- infrared imaging --- observability --- detecting distance --- earth entry vehicle --- synthetic aperture radar (SAR) --- rivers water-flow elevation estimation --- pixel-tracking --- phase unwrapping --- infrared small-faint target detection --- non-independent and identical distribution (non-i.i.d.) mixture of Gaussians --- flux density --- variational Bayesian --- target detection --- target identification --- SAR --- visible --- infrared --- hyperspectral

Earth Observation Data Cubes

Authors: --- --- ---
ISBN: 9783039280926 9783039280933 Year: Pages: 302 DOI: 10.3390/books978-3-03928-093-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Satellite Earth observation (EO) data have already exceeded the petabyte scale and are increasingly freely and openly available from different data providers. This poses a number of issues in terms of volume (e.g., data volumes have increased 10

Keywords

topology based map algebra --- data cubes --- big data --- map algebra --- earth oberservation --- GRASS GIS --- earth observations --- satellite imagery --- R --- data cubes --- Sentinel-2 --- Sentinel-1 --- SAR --- analysis ready data --- ARD --- interoperability --- data cube --- Earth observation --- pyroSAR --- data cube --- image cube --- image data cube --- imagery --- Landsat --- Sentinel --- earth observation --- GIS --- web services --- web application --- analysis --- GIS --- Open Data Cube --- Earth Observations --- interoperability --- visualization --- Sentinel --- Analysis Ready Data --- Sentinel-1 --- Synthetic Aperture Radar --- Data Cube --- dual-polarimetric decomposition --- interferometric coherence --- Digital Earth Australia --- remote sensing --- big Earth data --- big EO data --- information extraction --- semantic enrichment --- time-series --- Open Data Cube --- remote sensing --- geospatial standards --- landsat --- sentinel --- analysis ready data --- dynamic data citation --- subset --- data curation --- persistent identifier --- data provenance --- metadata --- versioning --- query store --- data sharing --- FAIR principles --- big earth data --- sustainable development goals --- swiss DC --- Armenian DC --- Landsat --- sentinel --- analysis ready data --- data discovery --- metadata --- knowledge base --- graph data --- intelligent semantic agents --- data cube --- optical remote sensing --- snow cover --- Gran Paradiso National Park --- climate change --- land cover classification --- change --- Digital Earth Australia --- open data cube --- Landsat --- Australia --- Open Data Cube --- UN 2030 Agenda for Sustainable Development --- UN System of Environmental Economic Accounting --- Earth observation data --- open science --- reproducibility --- earth observations --- data cube --- analysis ready data --- remote sensing --- satellite imagery

Remote Sensing based Building Extraction

Authors: --- --- ---
ISBN: 9783039283828 9783039283835 Year: Pages: 442 DOI: 10.3390/books978-3-03928-383-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Construction
Added to DOAB on : 2020-04-07 23:07:09
License:

Loading...
Export citation

Choose an application

Abstract

Building extraction from remote sensing data plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Even though significant research has been carried out for more than two decades, the success of automatic building extraction and modeling is still largely impeded by scene complexity, incomplete cue extraction, and sensor dependency of data. Most recently, deep neural networks (DNN) have been widely applied for high classification accuracy in various areas including land-cover and land-use classification. Therefore, intelligent and innovative algorithms are needed for the success of automatic building extraction and modeling. This Special Issue focuses on newly developed methods for classification and feature extraction from remote sensing data for automatic building extraction and 3D

Keywords

roof segmentation --- outline extraction --- convolutional neural network --- boundary regulated network --- very high resolution imagery --- building boundary extraction --- convolutional neural network --- active contour model --- high resolution optical images --- LiDAR --- richer convolution features --- building edges detection --- high spatial resolution remote sensing imagery --- building --- modelling --- reconstruction --- change detection --- LiDAR --- point cloud --- 3-D --- building extraction --- deep learning --- attention mechanism --- very high resolution --- imagery --- building detection --- aerial images --- feature-level-fusion --- straight-line segment matching --- occlusion --- building regularization technique --- point clouds --- boundary extraction --- regularization --- building reconstruction --- digital building height --- 3D urban expansion --- land-use --- DTM extraction --- open data --- developing city --- accuracy analysis --- building detection --- building index --- feature extraction --- mathematical morphology --- morphological attribute filter --- morphological profile --- building extraction --- deep learning --- semantic segmentation --- data fusion --- high-resolution satellite images --- GIS data --- high-resolution aerial images --- deep learning --- generative adversarial network --- semantic segmentation --- Inria aerial image labeling dataset --- Massachusetts buildings dataset --- building extraction --- simple linear iterative clustering (SLIC) --- multiscale Siamese convolutional networks (MSCNs) --- binary decision network --- unmanned aerial vehicle (UAV) --- image fusion --- high spatial resolution remotely sensed imagery --- object recognition --- deep learning --- method comparison --- LiDAR point cloud --- building extraction --- elevation map --- Gabor filter --- feature fusion --- semantic segmentation --- urban building extraction --- deep convolutional neural network --- VHR remote sensing imagery --- U-Net --- remote sensing --- deep learning --- building extraction --- web-net --- ultra-hierarchical sampling --- 3D reconstruction --- indoor modelling --- mobile laser scanning --- point clouds --- 5G signal simulation --- building extraction --- high-resolution aerial imagery --- fully convolutional network --- semantic segmentation --- n/a

Overcoming Data Scarcity in Earth Science

Authors: --- --- ---
ISBN: 9783039282104 / 9783039282111 Year: Pages: 94 DOI: 10.3390/books978-3-03928-211-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

heavily Environmental mathematical models represent one of the key aids for scientists to forecast, create, and evaluate complex scenarios. These models rely on the data collected by direct field observations. However, assembly of a functional and comprehensive dataset for any environmental variable is difficult, mainly because of i) the high cost of the monitoring campaigns and ii) the low reliability of measurements (e.g., due to occurrences of equipment malfunctions and/or issues related to equipment location). The lack of a sufficient amount of Earth science data may induce an inadequate representation of the response’s complexity in any environmental system to any type of input/change, both natural and human-induced. In such a case, before undertaking expensive studies to gather and analyze additional data, it is reasonable to first understand what enhancement in estimates of system performance would result if all the available data could be well exploited. Missing data imputation is an important task in cases where it is crucial to use all available data and not discard records with missing values. Different approaches are available to deal with missing data. Traditional statistical data completion methods are used in different domains to deal with single and multiple imputation problems. More recently, machine learning techniques, such as clustering and classification, have been proposed to complete missing data. This book showcases the body of knowledge that is aimed at improving the capacity to exploit the available data to better represent, understand, predict, and manage the behavior of environmental systems at all practical scales.

Protection Strategy against Spruce Budworm

Author:
ISBN: 9783039280964 9783039280971 Year: Pages: 220 DOI: 10.3390/books978-3-03928-097-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Forestry --- Biology --- Science (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Spruce budworm (Choristoneura fumiferana (Clem.)) outbreaks are a dominant natural disturbance in the forests of Canada and northeastern USA. Widespread, severe defoliation by this native insect results in large-scale mortality and growth reductions of spruce (Picea sp.) and balsam fir (Abies balsamea (L.) Mill.) forests, and largely determines future age–class structure and productivity. The last major spruce budworm outbreak defoliated over 58 million hectares in the 1970s–1980s, and caused 32–43 million m3/year of timber volume losses from 1978 to 1987, in Canada. Management to deal with spruce budworm outbreaks has emphasized forest protection, spraying registered insecticides to prevent defoliation and keep trees alive. Other tactics can include salvage harvesting, altering harvest schedules to remove the most susceptible stands, or reducing future susceptibility by planting or thinning. Chemical insecticides are no longer used, and protection strategies use biological insecticides Bacillus thuringiensis (B.t.) or tebufenozide, a specific insect growth regulator. Over the last five years, a $30 million research project has tested another possible management tactic, termed an ‘early intervention strategy’, aimed at area-wide management of spruce budworm populations. This includes intensive monitoring to detect ‘hot spots’ of rising budworm populations before defoliation occurs, targeted insecticide treatment to prevent spread, and detailed research into target and non-target insect effects. The objective of this Special Issue is to compile the most recent research on protection strategies against spruce budworm. A series of papers will describe results and prospects for the use of an early intervention strategy in spruce budworm and other insect management.

Keywords

forest pests --- defoliation --- spruce budworm --- multi-spectral remote sensing --- Acadian region --- Maine --- Quebec --- Choristoneura fumiferana --- Abies balsamea --- hardwood content --- defoliation prediction --- Choristoneura fumiferana --- annual defoliation --- spatial autocorrelation --- spatial-temporal patterns --- mixed effect models --- intertree variance --- insect population management --- spruce budworm --- early intervention --- defoliation --- economic losses --- decision support system --- optimized treatment design --- insect population management --- spruce budworm --- early intervention --- defoliation --- economic losses --- decision support system --- computable general equilibrium model --- Pinaceae --- endophytic fungi --- plant tolerance --- Phialocephala scopiformis --- Picea glauca --- spruce budworm --- phenology --- insect susceptibility --- spruce budworm --- forest protection --- early intervention strategy --- egg recruitment --- apparent fecundity --- growth rate --- spruce budworm --- Choristoneura fumiferana --- forest protection --- early intervention strategy --- survival --- apparent fecundity --- immigration --- growth rate --- treatment threshold --- insecticides --- spruce budworm --- moth --- tortricidae --- Choristoneura fumiferana (Clemens) --- forest protection --- early intervention strategy --- pheromone mating disruption --- migration --- dispersal --- spruce budworm --- Choristoneura fumiferana --- moth --- Lepidoptera --- forest protection --- early intervention strategy --- migration --- simulation --- aerobiology --- moths --- migration --- forest protection --- spruce budworm --- Choristoneura fumiferana (Clem.) --- early intervention strategy --- modelling --- circadian rhythm --- foliage protection --- population control --- monitoring --- area-wide management --- science communication --- economic and ecological cost: benefit analyses --- early intervention strategy --- foliage protection --- defoliation --- monitoring --- insecticide application

Listing 1 - 10 of 11 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (9)

Springer Nature (2)


License

CC by-nc-nd (9)

CC by (2)


Language

english (9)

eng (2)


Year
From To Submit

2020 (11)