Search results:
Found 120
Choose an application
Understanding plant responses to abiotic stresses is central to our ability to predict the impact of global change and environmental pollution on the production of food, feed and forestry. Besides increasing carbon dioxide concentration and rising global temperature, increasingly frequent and severe climatic events (e.g. extended droughts, heat waves, flooding) are expected in the coming decades. Additionally, pollution (e.g. heavy metals, gaseous pollutants such as ozone or sulfur dioxide) is an important factor in many regions, decreasing plant productivity and product quality. This Research topic focuses on stress responses at the level of whole plants, addressing biomass-related processes (development of the root system, root respiration/fermentation, leaf expansion, stomatal regulation, photosynthetic capacity, leaf senescence, yield) and interactions between organs (transport via xylem and phloem, long-distance signaling and secondary metabolites). Comparisons between species and between varieties of the same species are helpful to evaluate the potential for species selection and genetic improvement. This research topic is focused on the following abiotic stresses and interactions between them:- Increased carbon dioxide concentration in ambient air is an important parameter influenced by global change and affects photosynthesis, stomatal regulation, plant growth and finally yield.- Elevated temperature: both the steady rise in average temperature and extreme events of shorter duration (heat waves) must be considered in the context of alterations in carbon balance through increased photorespiration, decreased Rubisco activation and carboxylation efficiency, damage to photosynthetic apparatus, as well as loss of water via transpiration and stomatal sensitivity. - Low temperatures (late frosts, prolonged cold phases, freezing temperature) can decrease overwintering survival rates, productivity of crop plants and species composition in meadows.- Water availability: More frequent, severe and extended drought periods have been predicted by climate change models. The timing and duration of a drought period is crucial to determining plant responses, particularly if the drought event coincides with an increase in temperature. Drought causes stomatal closure, decreasing the cooling potential of transpiration and potentially leading to thermal stress as leaf temperature rises. Waterlogging may become also more relevant during the next decades and is especially important for seedlings and young plants. It is not the presence of water itself that causes the stress, but the exclusion of oxygen from the soil which causes a decrease in respiration and an increase in fermentation rates followed by a period of potential oxidative stress as water recedes.- Salinity: high salt concentration in soil influences soil water potential, the water status of the plant and hence affects productivity. Salt tolerance will become an important trait driven by increased competition for land and the need to exploit marginal lands.
Carbon Dioxide --- Climate Change --- heat --- Low temperature --- salt --- water availability --- Whole plant physiology --- yield
Choose an application
Environmental stress factors negatively affect plant growth by inducing proteins dysfunction. As coping strategies, plant have developed a comprehensive protein quality controlling system (PQCS) to keep proteins homeostasis. In this research topic of “Protein Quality Controlling Systems in Plant Responses to Environmental Stresses”, some latest researches and opinions in this field, including heat shock proteins (HSPs), unfolded protein response (UPR), ubiquitin-proteasome system (UPS) and autophagy, were reported, aiming to provide novel insights for increasing crop production under environmental challenges.
plant --- heat shock proteins --- unfolded protein response --- proteasome --- autophagy --- environmental stress
Choose an application
This presentation deals with simulation studies that will be interpreted as numerical experiments. Porous structures are modelled in three dimensions (microstructure models). Heat transfer and pressure drop of the flow through a porosity is analysed using the numerical solution of the Navier-Stokes equations (CFD). Empirical correlations for simplified calculations are presented that can be used by engineers for rough estimates and design of components with porosities like metal foam.
Choose an application
Lattice Boltzmann methods are a promising approach for the numerical solution of fluid-dynamic problems. We consider the one-dimensional Goldstein-Taylor model with the aim to answer some of the questions concerning the numerical analysis of lattice Boltzmann schemes. Discretizations for the solution of the heat equation are presented for a selection of boundary conditions. Stability and convergence of the solutions are proved by employing energy estimates and explicit Fourier representations.
Choose an application
Over the past two decades, there has been increased attention in the research of nanofluid due to its widely expanded domain in many industrial and technological applications. Major advances in the modeling of key topics such as nanofluid, MHD, heat transfer, convection, porous media, Newtonian/non-Newtonian fluids have been made and finally published in the special issue on recent developments in nanofluids for Applied Sciences. The present attempt is to edit the special issue in a book form. Although, this book is not a formal textbook even than it will definitely be useful for research students and university teachers in overcoming the difficulties occurring in the said topic while dealing with the nonlinear governing equations. On one side the real world problems in mathematics, physics, biomechanics, engineering and other disciplines of sciences are mostly described by the set of nonlinear equations whereas on the other hand, it is often more difficult to get an analytic solution or even a numerical one. This book has successfully handled this challenging job with latest techniques. In addition the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Nanofluid flows --- heat transfer --- convection --- thermal effects --- thermal radiations --- magnetohydrodynamics --- viscous fluids --- neural network --- slip --- porosity --- numerical and analytical techniques
Choose an application
The influence of climate change on urban heat island intensity is analyzed for the city of Karlsruhe, southwestern Germany. First, its present diurnal and seasonal as well as spatial modes of variability are characterized by means of different meteorological observation datasets. One focus is on temperature differences during heat events. Second, high-resolution regional climate model data allow for projecting the future development of the urban heat island.
Choose an application
The present work investigates the evolution of the electricity system and the heat system of the residential buildings in Germany until 2050. The aim of the research work relates to the analysis of the temporal evolution of the investigated energy systems as well as of the potential of innovative technologies at the interface of electricity and heat along with the assessment of the goals of climate and energy policy in the heat system of the residential sector.
Choose an application
Nuclear fusion is considered as a future source of sustainable energy supply. Since the H-mode discovery in ASDEX experiment ""Divertor I"" in 1982, the divertor has been an integral part of all modern tokamaks and stellarators. The major goal of this thesis is to develop a feasible divertor design for a fusion power plant to be built after ITER. The thesis describes the approach in the conceptual development of a helium-cooled divertor and the methods of verification and validation of the design.
Choose an application
This Special Issue of Processes operates on the basis of a rigorous peer-review with a single-blind assessment and at least two independent reviewers, thereby ensuring a high quality final product. I would like to thank our reviewers, for providing the authors with constructive comments, and Editorial Board, for their professional advice that led to the final decision. I am sure that, in coming years, readers of this Special Issue will find the scientific manuscripts interesting and beneficial to their research.
water friction loss --- three-dimensional temperature field --- numerical simulation --- canned motor --- computational fluid dynamics (CFD) --- ice storage --- finned tube --- natural convection --- visualization experiment --- numerical simulation --- boiling --- computational intelligence techniques --- heat flux --- optimization --- plate-fin heat sink --- partial heating --- forced convection --- multi-slip --- Keller-Box technique --- casson fluid --- thermo-diffusion --- axisymmetric flow --- natural convection --- flat plate --- aspect ratio --- orientation --- vertical --- horizontal --- plate heat exchanger --- numerical simulation --- phase change --- multiphase flow --- heat transfer --- axial piston pump --- RNG k-? model --- flow distribution characteristics --- PIV measurements --- viscosity --- crystallization --- ice-cream --- modelling --- scraped surface heat exchanger --- HEN synthesis --- CACRS --- operating condition --- MINLP --- optimization --- n/a
Choose an application
The combination of global warming and urban sprawl is the origin of the most hazardous climate change effect detected at urban level: Urban Heat Island, representing the urban overheating respect to the countryside surrounding the city. This book includes 18 papers representing the state of the art of detection, assessment mitigation and adaption to urban overheating. Advanced methods, strategies and technologies are here analyzed including relevant issues as: the role of urban materials and fabrics on urban climate and their potential mitigation, the impact of greenery and vegetation to reduce urban temperatures and improve the thermal comfort, the role the urban geometry in the air temperature rise, the use of satellite and ground data to assess and quantify the urban overheating and develop mitigation solutions, calculation methods and application to predict and assess mitigation scenarios. The outcomes of the book are thus relevant for a wide multidisciplinary audience, including: environmental scientists and engineers, architect and urban planners, policy makers and students.
heat health --- meteorological modeling --- urban climate --- urban-climate archipelago --- urban heat island --- urban heat island index --- Weather Research and Forecasting model (WRF) --- green area --- built-up area --- air temperature --- measurement --- calculation --- urbanization --- air and surface temperature measurements --- outdoor thermal comfort --- urban heat island --- surface cool island effect --- urban overheating --- urban microclimate --- mitigation strategies --- urban development --- park cool island --- urban cooling --- urban morphology --- micro-climate simulations --- ageing --- emissivity --- measurement --- solar reflectance --- solar reflectance index --- thermal emittance --- urban heat island --- land surface temperature --- “hot spots” --- “cold spots” --- MODIS downscaling --- overheating --- summer heat stress --- urban open space --- shading --- thermal comfort --- Physiologically Equivalent Temperature --- mitigation strategies --- cooling technologies --- cool materials --- WRF-Chem --- urban climate --- air quality --- urban heat island --- surface albedo --- climatic perception --- urban areas --- thermal comfort --- subtropical climate --- cool pavements --- road lighting --- urban heat island --- road surface --- material characterization --- luminance coefficient --- energy savings --- Euramet --- EMPIR 16NRM02 --- building energy performance --- energy simulation --- building retrofit --- multi-objective optimization --- genetic algorithm --- urban overheating --- cost-optimal analysis --- lifecycle analysis --- office buildings --- sustainability --- air temperature --- spectral analysis --- multifractal analysis --- structure functions analysis --- cool roofs --- fine-resolution meteorological modeling --- mobile temperature observations --- urban climate archipelago --- urban heat island --- urban vegetation --- urbanized WRF --- Weather Research and Forecasting model --- multiple linear regression --- urban heat island --- urban climatology --- urban energy balance --- air temperature --- land cover fraction --- urban morphology --- land surface temperature --- heat stress --- urban heat mitigation --- albedo --- cool facades --- spectral reflectance --- urban remote sensing --- empirical line method --- building scale --- local climate zone --- urban climate --- sky view factor --- morphological indicator --- open science --- GIS --- urban heat island --- urban overheating --- non-constructible parcels --- cool surfaces --- urban vegetation --- ENVI-met --- mitigation measures --- Beirut