Search results: Found 33

Listing 11 - 20 of 33 << page
of 4
>>
Sort by
Biocomputing 2020:Proceedings of the Pacific Symposium

Authors: --- --- --- --- et al.
ISBN: 9789811215636 Year: Pages: 764 DOI: 10.1142/11698 Language: English
Publisher: World Scientific Publishing Co.
Added to DOAB on : 2019-12-10 07:38:37
License:

Loading...
Export citation

Choose an application

Abstract

The Pacific Symposium on Biocomputing (PSB) 2020 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2020 will be held on January 3 –7, 2020 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2020 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's "hot topics." In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field.

Systems biology and ecology of microbial mat communities

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197934 Year: Pages: 262 DOI: 10.3389/978-2-88919-793-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-02-03 17:04:57
License:

Loading...
Export citation

Choose an application

Abstract

Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.

Molecular and Biotechnological Advancements in Hypericum Species

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451173 Year: Pages: 159 DOI: 10.3389/978-2-88945-117-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Hypericum is an important genus of the family Hypericaceae and includes almost 500 species of herbs, shrubs and trees. Being the home for many important bioactive compounds, these species have a long traditional value as medicinal plants. Currently, several species of this genus have been used in ailments as knowledge-based medicine in many countries. In the recent past, several pharmacological studies have been performed using crude extracts to evaluate the traditional knowledge. Results of those studies have revealed that Hypericum extract exert multiple pharmacological properties including antidepressant, antimicrobial, antitumor and wound healing effects. Phytochemical analyses revealed that these species produce a broad spectrum of valuable compounds, mainly naphthodianthrones (hypericin and pseudohypericin), phloroglucinols (hyperforin and adhyperforin), flavonoids (hyperoside, rutin and quercitrin), benzophenones/xanthones (garcinol and gambogic acid), and essential oils. Noticeably, Hypericum perforatum extracts have been used to treat mild to moderate depression from ancient to present times and the antidepressant efficacy of Hypericum extracts has been attributed to its hyperforin content, which is known to inhibit the re-uptake of aminergic transmitters such as serotonin and noradrenaline into synaptic nerve endings. Neurodegenerative diseases and inflammatory responses are also linked with Reactive Oxygen Species (ROS) production. A wide range of flavonoids present in Hypericum extracts, namely, rutin, quercetin, and quercitrin exhibit antioxidant/free radical scavenging activity. Hypericin, beside hyperforin, is the active molecule responsible for the antitumor ability of Hypericum extracts and is seen as a potent candidate to treat brain tumor. Recent attempts of using hypericin in patients with recurrent malignant brain tumors showed promising results. Collectively, Hypericum species contain multiple bioactive constituents, suggesting their potential to occupy a huge portion of the phytomedicine market. Today, studies on medicinal plants are rapidly increasing because of the search for new active molecules, and for the improvement in the production of plants and molecules for the herbal pharmaceutical industries. In the post genomic era, application of molecular biology and genomic tools revolutionized our understanding of major biosynthetic pathways, phytochemistry and pharmacology of Hypericum species and individual compounds. This special issue mainly focuses on the recent advancements made in the understanding of biosynthetic pathways, application of biotechnology, molecular biology, genomics, pharmacology and related areas.

Bioactive Compounds from Microbes

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889451852 Year: Pages: 142 DOI: 10.3389/978-2-88945-185-2 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-08-28 14:01:09
License:

Loading...
Export citation

Choose an application

Abstract

Microorganisms have had a long and surprising history. They were “invisible” until invention of microscope in the 17th century. Until that date, although they were extensively (but inconsciously) employed in food preservation, beer and wine fermentation, cheese, vinegar, yogurt and bread making, as well as being the causative agents of infectious diseases, they were considered as “not-existing”. The work of Pasteur in the middle of the 19th century revealed several biological activities performed by microorganisms including fermentations and pathogenicity. Due to the urgent issue to treat infectious diseases (the main cause of death at those times) the “positive potential” of the microbial world has been neglected for about one century. Once the fight against the “evil” strains was fulfilled also thanks to the antibiotics, industry began to appreciate bacteria’s beneficial characteristics and exploit selected strains as starters for both food fermentations and aroma, enzyme and texturing agent production. However, it was only at the end of the 20th century that the probiotic potential of some bacteria such as lactic acid bacteria and bifidobacteria was fully recognized. Very recently, apart from the probiotic activity of in toto bacteria, attention has begun to be directed to the chemical mediators of the probiotic effect. Thanks also to the improvement of techniques such as transcriptomics, proteomics and metabolomics, several bioactive compounds are continuously being discovered. Bioactive molecules produced by bacteria, yeasts and virus-infected cells proved to be important for improving or impairing human health. The most important result of last years’ research concerns the discovery that a very complex network of signals allows communication between organisms (from intra-species interactions to inter-kingdom signaling). Based on these findings a completely new approach has arisen: the system biology standpoind. Actually, the different organisms colonizing a certain environmental niche are not merely interacting with each other as individuals but should be considered as a whole complex ecosystem continuously exchanging information at the molecular level. In this context, this topic issue explores both antagonistic compounds (i.e. antibiotics) and “multiple function” cooperative molecules improving the physiological status of both stimulators and targets of this network. From the applicative viewpoint, these molecules could be hopefully exploited to develop new pharmaceuticals and/or nutraceuticals for improving human health.

Cancer Metabolomics 2018

Authors: --- ---
ISBN: 9783039213450 9783039213467 Year: Pages: 184 DOI: 10.3390/books978-3-03921-346-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The metabolomics approach, defined as the study of all endogenously-produced low-molecular-weight compounds, appeared as a promising strategy to define new cancer biomarkers. Information obtained from metabolomic data can help to highlight disrupted cellular pathways and, consequently, contribute to the development of new-targeted therapies and the optimization of therapeutics. Therefore, metabolomic research may be more clinically translatable than other omics approaches, since metabolites are closely related to the phenotype and the metabolome is sensitive to many factors. Metabolomics seems promising to identify key metabolic pathways characterizing features of pathological and physiological states. Thus, knowing that tumor metabolism markedly differs from the metabolism of normal cells, the use of metabolomics is ideally suited for biomarker research. Some works have already focused on the application of metabolomic approaches to different cancers, namely lung, breast and liver, using urine, exhaled breath and blood. In this Special Issue we contribute to a more complete understanding of cancer disease using metabolomics approaches.

Metabolomics in Neurodegenerative Disease

Author:
ISBN: 9783039280407 / 9783039280414 Year: Pages: 184 DOI: 10.3390/books978-3-03928-041-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The range of human neurodegenerative diseases continues to pose significant unmet medical needs for societies around the world. The progressive and terminal nature of these conditions places a considerable personal burden on the individual affected but also on public health systems and health services. Tens of millions of people are indiscriminately affected by various dementias, which are rising at an alarming rate. There are no cures for many conditions, and it is clear that treatments applied as early as possible could greatly improve outcomes for patients. Therefore, new disease classification and diagnostic tools should be a key priority. Metabolomics represents a relatively new field of analytical science, which can be extremely useful in the early diagnosis of disease. The relatively unique feature of metabolites is that they sit at the intersection between the genetic background of an organism and its environment. Because many neurodegenerative diseases are not genetically inherited (instead having a range of known genetic risk factors and also a large number of unknown environmental triggers) the field of metabolomics offers great promise for the discovery of new, biologically, and clinically relevant biomarkers for neurodegenerative disorders. It is already bringing forward new knowledge in terms of the mechanisms of neurodegenerative disease.

Redox and Nitrosative Signaling in Cardiovascular System: From Physiological Response to Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889457267 Year: Pages: 258 DOI: 10.3389/978-2-88945-726-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

The role of ROS/RNS signaling in cardiovascular functions and diseases is increasingly emerging in the last decades. The involvement of ROS/RNS in the control of a large number of cardiovascular functions like the regulation of the vascular tone, the control of blood pressure or myocyte excitation-contraction coupling and force development has been broadly investigated and in part clarified. On the other hand, many efforts have been focused in clarifying the redox mechanisms involved in cardiovascular diseases like ischemia/reperfusion injury, diabetes-associated cardiovascular dysfunctions, atherosclerosis or hypertension, just to mention the major ones. However, in most cases the two levels of investigation remain separate and not interlaced, failing in the attempt to provide a unified vision of the pathophysiologic mechanisms of cardiovascular diseases. The major aim of the Research Topic has been to collect original papers and review articles dealing with the issue from basic to translation research point of views. The topic includes contributions that highlight different interesting aspects of cardiovascular biology with an integrated approach useful for the development of new ideas and advancements in the field of redox signaling in the control of normal cardiovascular functions and their disruption in diseases.

Yeast Biotechnology

Author:
ISBN: 9783038424437 9783038424420 Year: Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-28 09:30:16
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.

Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions

Author:
ISBN: 9783038979920 9783038979937 Year: Pages: 212 DOI: 10.3390/books978-3-03897-993-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Oral health is general health. If the oral cavity is kept healthy, the whole body is always healthy. Bacteria in the oral cavity do not stay in the oral cavity, but rather they travel throughout the body and can induce various diseases. Periodontal pathogens are involved in tooth loss. The number of remaining teeth decreases with age. People with more residual teeth can bite food well and live longer with lower incidence of dementia. There are many viruses in the oral cavity that also cause various diseases. Bacteria and viruses induce and aggravate inflammation, and therefore should be removed from the oral cavity. In the natural world, there are are many as yet undiscovered antiviral, antibacterial and anti-inflammatory substances. These natural substances, as well as chemically modified derivatives, help our oral health and lead us to more fulfilling, high quality lives. This Special Issue, entitled “Biological Efficacy of Natural and Chemically Modified Products against Oral Inflammatory Lesions”, was written by specialists from a diverse variety of fields. It serves to provide readers with up-to-date information on incidence rates in each age group, etiology and treatment of stomatitis, and to investigate the application of such treatments as oral care and cosmetic materials.

Keywords

metabolomics --- oral cell --- benzaldehyde --- eugenol --- inflammation --- cytotoxicity --- stomatitis --- recurrent aphthous stomatitis --- oral lichen planus --- CCN2 --- glucocorticoids --- alkaloids --- anti-human immunodeficiency virus (HIV) --- antiviral --- natural product --- human virus --- inflammatory disease --- stomatitis --- periodontitis --- anti-osteoclast activity --- cepharanthin --- herbal medicine --- natural product --- arachidonic acid cascade --- allergic rhinitis --- mice --- quercetin --- thioredoxin --- nasal epithelial cell --- production --- increase --- in vitro --- in vivo --- nutritionally variant streptococci --- antimicrobial susceptibilities --- oral microbiota --- infective endocarditis --- kampo formula --- traditional Japanese herbal medicine --- stomatitis --- mucositis --- Hangeshashinto --- polyphenol --- chromone --- lignin-carbohydrate complex --- alkaline extract --- Kampo medicine --- glucosyltransferase --- angiotensin II blocker --- QSAR analysis --- oral diseases --- dental application --- Chinese herbal remedies --- stomatitis --- periodontitis --- Kampo --- traditional medicine --- Jixueteng --- Juzentaihoto --- technical terms --- gargle --- tongue diagnosis --- mastic --- pathogenic factors --- quantitative structure-activity relationship --- machine learning --- random forest --- natural products --- tumour-specificity --- Kampo medicine --- constituent plant extract --- stomatitis --- oral inflammation --- quantitative structure-activity relationship (QSAR) analysis --- metabolomics

Listing 11 - 20 of 33 << page
of 4
>>
Sort by
Narrow your search