Search results: Found 81

Listing 11 - 20 of 81 << page
of 9
>>
Sort by
The truth in complexes: why unraveling ion channel multi-protein signaling nexuses is critical for understanding the function of the nervous system

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194452 Year: Pages: 160 DOI: 10.3389/978-2-88919-445-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

In the search for simple explanations of the natural world, its complicated textures are often filed down to a smoothened surface of our liking. The impetus for this Research Topic was borne out of a need to re-ignite interest in the complex – in this case in the context of ion channels in the nervous system. Ion channels are the large proteins that form regulated pores in the membranes of cells and, in the brain, are essential for the transfer, processing and storage of information. These pores full of twists and turns themselves are not just barren bridges into cells. More and more we are beginning to understand that ion channels are like bustling medieval bridges (packed with apartments and shops) rather than the more sleek modern variety – they are dynamic hubs connected with many structures facilitating associated activities. Our understanding of these networks continues to expand as our investigative tools advance. Together these articles highlight how the complexity of ion channel signaling nexuses is critical to the proper functioning of the nervous system.

Homeostatic and retrograde signaling mechanisms modulating presynaptic function and plasticity

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197040 Year: Pages: 152 DOI: 10.3389/978-2-88919-704-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Activity within neural circuits shapes the synaptic properties of component neurons in a manner that maintains stable excitatory drive, a process referred to as homeostatic plasticity. These potent and adaptive mechanisms have been demonstrated to modulate activity at the level of an individual neuron, synapse, circuit, or entire network, and dysregulation at some or all of these levels may contribute to neuropsychiatric disorders, intellectual disability, and epilepsy. Greater mechanistic understanding of homeostatic plasticity will provide key insights into the etiology of these disorders, which may result from network instability and synaptic dysfunction. Over the past 15 years, the molecular mechanisms of this form of plasticity have been intensely studied in various model organisms, including invertebrates and vertebrates. Though once thought to have a predominantly postsynaptic basis, emerging evidence suggests that homeostatic mechanisms act on both sides of the synapse through mechanisms such as retrograde signaling, to orchestrate compensatory adaptations that maintain stable network function. These trans-synaptic signaling systems ultimately alter neurotransmitter release probability by a variety of mechanisms including changes in vesicle pool size and calcium influx. These adaptations are not expected to occur homogenously at all terminals of a pre-synaptic neuron, as they might synapse with neurons in non-overlapping circuits. However, the factors that govern the homeostatic control of synapse-specific plasticity are only beginning to be understood. In addition to our limited molecular understanding of pre-synaptic homeostatic plasticity, very little is known about its prevalence in vivo or its physiological and disease relevance. In this research topic, we aim to fill the aforementioned void by covering a broad range of topics that include:- Identification of signaling pathways and mechanisms that operate globally or locally to induce specific pre-synaptic adaptations- The nature of pre-synaptic ion channels relevant to this form of plasticity and their synapse-specific modulation and trafficking- Development and utilization of new tools or methods to study homeostatic plasticity in axons and pre-synaptic terminals- Novel mechanisms of homeostatic adaptations in pre-synaptic neurons- Postsynaptic sensors of activity and retrograde synaptic signaling systems- A comprehensive analysis of the kinds of pre-synaptic adaptations in diverse neural circuits and cell types- Identification of physiological or developmental conditions that promote pre-synaptic homeostatic adaptations- How activity-dependent (Hebbian) and homeostatic synaptic changes are integrated to both permit sufficient flexibility and maintain stable activity- Relevance of pre-synaptic homeostatic plasticity to the etiology of neuropsychiatric disorders- Computational modeling of pre-synaptic homeostatic plasticity and network stability.

Enterotoxins: Microbial Proteins and Host Cell Dysregulation

Author:
ISBN: 9783038421634 9783038421641 Year: Pages: 306 DOI: 10.3390/books978-3-03842-164-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-06-03 11:14:38
License:

Loading...
Export citation

Choose an application

Abstract

Mesothelioma Heterogeneity: Potential Mechanisms

Author:
ISBN: 9783038974734 9783038974741 Year: Pages: 204 DOI: 10.3390/books978-3-03897-474-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology --- Oncology
Added to DOAB on : 2019-01-11 11:18:51
License:

Loading...
Export citation

Choose an application

Abstract

Mesothelioma is a rare aggressive cancer that develops from the mesothelium. Recent molecular analyses have defined four different types of mesothelioma based on gene expression and two major molecularly-defined groups based on prognosis. In this volume, potential mechanisms causing this heterogeneity are explored. The different chapters include heterogeneity learned from experimental animal models in NF2/Hippo pathway signaling, stem cell signaling pathways, the tumor microenvironment, and micro RNA secretome. Novel aspects deserving attention such as the implication of long, non-coding RNA in disease heterogeneity are described. The volume also includes the description of tools useful to address some specific questions such as an assessment of the copy number variations of two tumor suppressors frequently mutated in mesothelioma or an investigation of Macrophage Inhibition Factor signaling in mesothelioma.

Gonadotropin-Releasing Hormone Receptor Signaling and Functions

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454792 Year: Pages: 170 DOI: 10.3389/978-2-88945-479-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

This eBook provides a comprehensive overview of our current knowledge on Gonadotropin-releasing hormone receptor evolution, structure, signaling and functions. Apart from review articles, it comprises exciting new research, as well as hypotheses and perspectives, all of which are valuable in guiding our further research in this field.

Involvements of TRP Channels and Oxidative Stress in Pain

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455959 Year: Pages: 126 DOI: 10.3389/978-2-88945-595-9 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Undoubtedly, pain conditions the quality of life of millions of people worldwide suffering a wide range of diseases. Major research efforts are being made by the international scientific community to determine the mechanisms underlying nociception. Growing evidence points out a complex network including oxidative and nitrosative stress, inflammatory response and cation signaling. In this sense, transient receptor potential (TRP) channels have attracted researchers’ attention. Expression levels are very different in tissues and cells mediating a myriad of processes in our organism. At the neurological level, it has been observed that the expression levelsof four TRP channels (TRPA1, TRPM2, TRPV1, and TRPV4) are high in neurons related to nociception, including dorsal root ganglion and trigeminal ganglia neurons. For this reason, this research field promises to shed light on this intricated matrix linking oxidative stress, calcium signaling (via TRP channels), and inflammatory signals in different pain modalities, including neuropathic pain and chemotherapy-induced peripheral pain. In such a way, all this intense research activity will enable us to design individual and rational treatment strategies for pain relief, such as the use of molecular neurosurgery.

Structural and computational glycobiology: immunity and infection

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196388 Year: Pages: 102 DOI: 10.3389/978-2-88919-638-8 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-10-30 16:33:44
License:

Loading...
Export citation

Choose an application

Abstract

Interest in understanding the biological role of carbohydrates has increased significantly over the last 20 years. The use of structural techniques to understand carbohydrate-protein recognition is still a relatively young area, but one that is of emerging importance. The high flexibility of carbohydrates significantly complicates the determination of high quality structures of their complexes with proteins. Specialized techniques are often required to understand the complexity of carbohydrate recognition by proteins. In this Research Topic, we will focus on structural and computational approaches to understanding carbohydrate recognition by proteins involved in immunity and infection. Particular areas of focus include cancer immunotherapeutics, carbohydrate-lectin interactions, glycosylation and glycosyltransferases.

Frontiers in the Pharmacological Manipulation of Intracellular cAMP Levels

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198153 Year: Pages: 191 DOI: 10.3389/978-2-88919-815-3 Language: English
Publisher: Frontiers Media SA
Subject: Therapeutics --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Cyclic adenosine monophosphate (cAMP) is a second messenger of paramount biological importance, involved in the regulation of a significant number of cellular functions through the cAMP-dependent intracellular signal transduction pathways. The aim of this "Frontiers in Pharmacology" Research Topic was to attract contributions that highlight emerging ideas in the cAMP field that: (i) describe its role in cellular function and homeostasis, (ii) present the current approaches to its pharmacological manipulation, and (iii) clarify its central role in the development of more targeted therapeutic approaches toward a spectrum of diseases. The present collection of articles highlights, in a representative (but certainly not exhaustive) way, the research activity and emerging concepts in the field, while it also reveals the therapeutic potential that targeted pharmacological manipulation of intracellular cAMP levels could exert on a number of pathological conditions.

Novel roles of non-coding brain RNAs in health and disease

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193097 Year: Pages: 213 DOI: 10.3389/978-2-88919-309-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Non-coding RNAs (ncRNAs), and in particular microRNAs are rapidly becoming the focus of research interest in numerous basic and translational fields, including brain research; and their importance for many aspects in brain functioning merits special discussion. The wide-scope, multi-targeted and highly efficient manner of ncRNA regulatory activities draws attention to this topic by many, but the available research and analysis tools and experimental protocols are still at their infancy, and calls for special discussion given their importance for many aspects in brain functioning. This eBook is correspondingly focused on the search for, identification and exploration of those non-coding RNAs whose activities modulate the multi-leveled functions of the eukaryotic brain. The different articles strive to cover novel approaches for identifying and establishing ncRNA-target relationships, provide state of the art reports of the affected neurotransmission pathways, describe inherited and acquired changes in ncRNA functioning and cover the use of ncRNA mimics and blockade tools for interference with their functions in health and disease of the brain. Non-coding RNAs are here to stay, and this exciting eBook provides a glimpse into their impact on our brain’s functioning at the physiology, cell biology, behavior and immune levels.

The Coming of Age of Insulin-Signalling in Insects

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193141 Year: Pages: 138 DOI: 10.3389/978-2-88919-314-1 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

The new millennium has seen a major paradigm shift in insect endocrinology. Great advancements are being made which establish that nutrition and growth play a central role in diverse cellular and physiological phenomena during insect development and reproduction. Nutrition affects rates of growth and is mainly regulated by the function of the pathway of insulin/insulin-like growth factor signalling. This pathway is highly conserved across species and ultimately regulates rates of cell growth and proliferation in growing organs. Insulin and insulin-like peptides (ILPs) are some of the best studied hormones in the animal kingdom and all share a common structural motif and initiate a wide range of closely similar physiological processes in higher organisms. In insects, nutrition, via circulating sugar, promotes release of ILPs from brain neurosecretory cells into the haemolymph, which act on peripheral tissues and stimulate protein synthesis and cell growth. Therefore, insect ILPs are common mediators between nutrition and growth in insects and are functionally analogous to mammalian insulin. The 1980s and 1990s witnessed great progress in elucidation of the physiological and molecular mechanism of action of numerous insect hormones involved in regulation of growth, development, reproduction and metabolism. But the signals for the initiation or termination of controlled events remained largely unknown. ILPs were first identified from the silkmoth Bombyx mori and were named bombyxins, but related peptides were soon found in numerous species and their functions elucidated. The insulin signalling pathway is now recognized as a central factor in the timing of cell proliferation, growth, longevity, reproduction, and reproductive diapause, as well as social behaviour. Recent work has revealed that the insulin signalling pathway is closely integrated with that of various other hormones, including ecdysteroids, the juvenile hormones and neuropeptide(s) such a prothoracicotropic hormone. In addition, the pathway is also linked with both circadian (daily) and photoperiodic (seasonal) clocks potentially providing a basis for its timing function. This Research Topic aims to provide the only current collection of recent advances on insect ILPs. We encouraged submissions on all areas related to identification, characterization, regulation and physiological functions of insect ILPs. We welcomed both full and short reviews and original research articles.

Listing 11 - 20 of 81 << page
of 9
>>
Sort by
Narrow your search