Search results: Found 2

Listing 1 - 2 of 2
Sort by
Lipid Signaling in T Cell Development and Function

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196975 Year: Pages: 142 DOI: 10.3389/978-2-88919-697-5 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Allergy and Immunology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

Lipids are best known as energy storing molecules and core-components of cellular membranes, but can also act as mediators of cellular signaling. This is most prominently illustrated by the paramount importance of the phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) signaling pathways in many cells, including T cells and cancer cells. Both of these enzymes use the lipid phosphatidylinositol(4,5)bisphosphate (PIP2) as their substrate. PLCs produce the lipid product diacylglycerol (DAG) and soluble inositol(1,4,5)trisphosphate (IP3). DAG acts as a membrane tether for protein kinase C and RasGRP proteins. IP3 is released into the cytosol and controls calcium release from internal stores. The PI3K lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3) controls signaling by binding and recruiting effector proteins such as Akt and Itk to cellular membranes. Recent research has unveiled important signaling roles for many additional phosphoinositides and other lipids. The articles in this volume highlight how multiple different lipids govern T cell development and function through diverse mechanisms and effectors. In T cells, lipids can orchestrate signaling by organizing membrane topology in rafts or microdomains, direct protein function through covalent lipid-modification or non-covalent lipid binding, act as intracellular or extracellular messenger molecules, or govern T cell function at the level of metabolic regulation. The cellular activity of certain lipid messengers is moreover controlled by soluble counterparts, exemplified by symmetric PIP3/inositol(1,3,4,5)tetrakisphosphate (IP4) signaling in developing T cells. Not surprisingly, lipid producing and metabolizing enzymes have gained attention as potential therapeutic targets for immune disorders, leukemias and lymphomas.

Keywords

Lipid --- T cell --- eicosanoid --- PI3K --- Vitamin D --- diacylglyerol --- Inositol --- Pten --- SHIP --- Adipokine

PI3K signalling

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194193 Year: Pages: 139 DOI: 10.3389/978-2-88919-419-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The PI3Ks control many key functions in immune cells. PI3Ks phosphorylate PtdIns(4,5)P2 to yield PtdIns(3,4,5)P3. Initially, PI3K inhibitors such as Wortmannin, LY294002 and Rapamycin were used to establish a central role for Pi3K pathway in immune cells. Considerable progress in understanding the role of this pathway in cells of the immune system has been made in recent years, starting with analysis of various PI3K and Pten knockout mice and subsequently mTOR and Foxo knockout mice. Together, these experiments have revealed how PI3Ks control B cell and T cell development, T helper cell differentiation, regulatory T cell development and function, B cell and T cell trafficking, immunoglobulin class switching and much, much more. The PI3Kd inhibitor idelalisib has recently been approved for the treatment of B cell lymphoma. Clinical trials of other PI3K inhibitors in autoimmune and inflammatory diseases are also in progress. This is an opportune time to consider a Research Topic considering when what we have learned about the PI3K signalling module in lymphocyte biology and how this is making an impact on clinical immunology and haematology.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2015 (2)