Search results: Found 1

Listing 1 - 1 of 1
Sort by
Automated Machine Learning

Authors: --- ---
Book Series: The Springer Series on Challenges in Machine Learning ISBN: 9783030053185 Year: Pages: 219 DOI: 10.1007/978-3-030-05318-5 Language: English
Publisher: Springer Nature
Subject: Computer Science
Added to DOAB on : 2020-02-04 11:21:04
License:

Loading...
Export citation

Choose an application

Abstract

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Listing 1 - 1 of 1
Sort by
Narrow your search

Publisher

Springer Nature (1)


License

CC by (1)


Language

english (1)


Year
From To Submit

2019 (1)