Search results:
Found 7
Listing 1  7 of 7 
Sort by

Choose an application
Electrical power and energy systems are at the forefront of application developments in renewable energy, smart grids, electric aircrafts, electric and hybrid vehicles and much more. The associated technologies and control methods are crucial to achieving global targets in energy efficiency and lowcarbon operations, and will also contribute to key areas such as energy security. The greatest challenges occur when we combine new technologies at largescale and often complex system level. The Special Edition will cover theoretical developments with special emphasis on applications in electrical power and energy systems. Topics covered include:Renewable Energy Systems: Energy management; hybrid systems; distributed systems; renewable sources and integration; transient energy storage, charging networks.Electrical Machines, Drives and Applications: AC and DC machines and drives; multiscale systems modeling; remote monitoring and diagnosis; electric and hybrid vehicles; energy conversion, vehicle to grid interaction.Power Electronic Systems: Converters and emerging technologies; modeling simulation and control; power factor correction; power supplies; active filters; reliability and fault tolerance.Electrical Power Generation Systems: Modeling and simulation of electrical power systems; load management; power quality; distribution reliability; distributed and islanded power systems, sensor networks, communication and control.Electrical Power Systems Modeling and Control: Modeling and control methodologies and applications; intelligent systems; optimization and advanced heuristics; adaptive systems; robust control.
power systems  energy systems  energy management  electrical power systems  renewable energy  electrical machines  electrical drives  power electronics  energy conversion  power generation  distributed power systems  electric vehicles
Choose an application
The depletion of fossil fuels, the increase of energy demands, and the concerns over climate change are the major driving forces for the development of renewable energy, such as solar energy and wind power. However, the intermittency of renewable energy has hindered the deployment of largescale intermittent renewable energy, which, therefore, has necessitated the development of advanced largescale energy storage technologies. The use of largescale energy storage can effectively improve the efficiency of energy resource utilization, and increase the use of variable renewable resources, the energy access, and the enduse sector electrification (e.g., electrification of transport sector).This Special Issue will provide a platform for presenting the latest research results on the technology development of largescale energy storage. We welcome research papers about theoretical, methodological and empirical studies, as well as review papers, that provide critical overview on the state of the art of technologies. This special issue is open to all types of energy, such as thermal energy, mechanical energy, electrical energy and chemical energy, using different types of systems, such as phase change materials, batteries, supercapacitors, fuel cells, compressed air, etc., which are applicable to various types of applications, such as heat and power generation, electrical/hybrid transportation, etc.
Battery  Ultracapacitor  Fuel cell  Compressed air  Electric vehicles  Thermal energy storage  Phase change material  Energy storage  Management System Heat transfer enhancement
Choose an application
This Special Issue ""MultiAgent Systems"" gathers original research articles reporting results on the steadily growing area of agentoriented computing and multiagent systems technologies. After more than 20 years of academic research on multiagent systems (MASs), in fact, agentoriented models and technologies have been promoted as the most suitable candidates for the design and development of distributed and intelligent applications in complex and dynamic environments. With respect to both their quality and range, the papers in this Special Issue already represent a meaningful sample of the most recent advancements in the field of agentoriented models and technologies. In particular, the 17 contributions cover agentbased modeling and simulation, situated multiagent systems, sociotechnical multiagent systems, and semantic technologies applied to multiagent systems. In fact, it is surprising to witness how such a limited portion of MAS research already highlights the most relevant usage of agentbased models and technologies, as well as their most appreciated characteristics. We are thus confident that the readers of Applied Sciences will be able to appreciate the growing role that MASs will play in the design and development of the next generation of complex intelligent systems. This Special Issue has been converted into a yearly series, for which a new call for papers is already available at the Applied Sciences journal’s website: https://www.mdpi.com/journal/applsci/special_issues/MultiAgent_Systems_2019.
scaled consensus  delay  formation tracking  multiagent system  collision avoidance  multiple passive agents  Mobile Robot Navigation  pedestrian environment  kinodynamic planning  velocity obstacle  agentbased modeling  complex network  multiagent system  network management  [5]agentbased simulation  agentbased social simulation  multiagent system  agentoriented software engineering  sociogram  agent technology  organizational model  agent behavior  travel behavior  commuting  carpooling  online double auction  mechanism design  perishable goods  multiagent simulation  bike sharing systems (BSS)  regression models  open data  data visualization  multi agent systems  organizations and institutions  sociotechnical systems  multiagent systems  electric vehicles  charging stations  genetic algorithm  multiagent system  agentbased simulation  3D representation  humanmachine interaction  ambient intelligence  user interaction levels  intelligent agents  intelligent hybrid systems  type2 fuzzy inference system  methodologies for agentbased systems  organizations and institutions  socio–technical systems  computational accountability  social commitments  agentbased programming  multiagent system  BDI agents  modeldriven development  agent development methodology  semantic web service  ontology  SEA_ML  electronic bartering system  ambient intelligence  cognitive disabilities  mobile communication  orientation  person tracking  trajectory mining  agreement technologies  coordination models  multiagent systems  smart cities  surface vehicle  underactuated vehicle  RBFNNs  directed graph  coordinated control  Behavior Trees (BTs)  Genetic Programming (GP)  autonomous agents  behavior modeling  tree mining  agent development framework  mobile device agent  linked data  semantic web  multiagent systems  agentbased modelling  agentbased simulation  agentoriented technologies  coordination  Artificial Intelligence  computer science  multiagent systems  agent methodologies  agentbased simulation  ambient intelligence  smart cities
Choose an application
This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and MixedInteger Programming to the most modern methods based on bioinspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.
Cable joint  internal defect  thermal probability density  power system optimization  optimal power flow  developed grew wolf optimizer  energy internet  prosumer  energy management  consensus  demand response  dayahead load forecasting  modular predictor  feature selection  microphasor measurement unit  mutual information theory  stochastic state estimation  twopoint estimation method  JAYA algorithm  multipopulation method (MP)  chaos optimization algorithm (COA)  economic load dispatch problem (ELD)  optimization methods  constrained parameter estimation  extended Kalman filter  power systems  C&I particle swarm optimization  ringdown detection  optimal reactive power dispatch  loss minimization  voltage deviation  hybrid method  tabu search  particle swarm optimization  artificial lighting  simulation  calibration  radiance  GenOpt  street light points  DC optimal power flow  power transfer distribution factors  generalized generation distribution factors  unit commitment  adaptive consensus algorithm  distributed heatelectricity energy management  eight searching subregions  islanded microgrid  dragonfly algorithm  metaheuristic  optimal power flow  particle swarm optimization  CCHP system  energy storage  offdesign performance  dynamic solving framework  battery energy storage system  micro grid  MILP  PCS efficiency  piecewise linear techniques  renewable energy sources  optimal operation  UC  demand bidding  demand response  genetic algorithm  load curtailment  optimization  hybrid renewable energy system  pumpedhydro energy storage  offgrid  optimization  HOMER software  rural electrification  subSaharan Africa  Cameroon  building energy management system  HVAC system  energy storage system  energy flow model  dependability  sustainability  data center  power architectures  optimization  AC/DC hybrid active distribution  hierarchical scheduling  multistakeholders  discrete wind driven optimization  multiobjective optimization  optimal power flow  metaheuristic  wind energy  photovoltaic  smart grid  transformerfault diagnosis  principal component analysis  particle swarm optimization  support vector machine  wind power  integration assessment  interactive load  considerable decomposition  controllable response  SOCP relaxations  optimal power flow  current margins  affine arithmetic  interval variables  optimizingscenarios method  power flow  wind power  active distribution system  virtual power plant  stochastic optimization  decentralized and collaborative optimization  genetic algorithm  multiobjective particle swarm optimization algorithm  artificial bee colony  IEEE Std. 802000  Schwarz’s equation  fuzzy algorithm  radial basis function  neural network  ETAP  distributed generations (DGs)  distribution network reconfiguration  runnerroot algorithm (RRA)  interturn shortedcircuit fault (ISCF)  strong track filter (STF)  linear discriminant analysis (LDA)  switched reluctance machine (SRM)  charging/discharging  electric vehicle  energy management  genetic algorithm  intelligent scatter search  electric vehicles  heterogeneous networks  demand uncertainty  power optimization  Stackelberg game  power system unit commitment  hybrid membrane computing  crossentropy  the genetic algorithm based P system  the biomimetic membrane computing  transient stability  twostage feature selection  particle encoding method  fitness function  power factor compensation  nonsinusoidal circuits  geometric algebra  evolutionary algorithms  electric power contracts  electric energy costs  cost minimization  evolutionary computation  bioinspired algorithms  congestion management  lowvoltage networks  multiobjective particle swarm optimization  affinity propagation clustering  optimal congestion threshold  optimization  magnetic field mitigation  overhead  underground  passive shielding  active shielding  MV/LV substation  n/a
Choose an application
This book presents an interesting sample of the latest advances in optimization techniques applied to electrical power engineering. It covers a variety of topics from various fields, ranging from classical optimization such as Linear and Nonlinear Programming and Integer and MixedInteger Programming to the most modern methods based on bioinspired metaheuristics. The featured papers invite readers to delve further into emerging optimization techniques and their real application to case studies such as conventional and renewable energy generation, distributed generation, transport and distribution of electrical energy, electrical machines and power electronics, network optimization, intelligent systems, advances in electric mobility, etc.
Cable joint  internal defect  thermal probability density  power system optimization  optimal power flow  developed grew wolf optimizer  energy internet  prosumer  energy management  consensus  demand response  dayahead load forecasting  modular predictor  feature selection  microphasor measurement unit  mutual information theory  stochastic state estimation  twopoint estimation method  JAYA algorithm  multipopulation method (MP)  chaos optimization algorithm (COA)  economic load dispatch problem (ELD)  optimization methods  constrained parameter estimation  extended Kalman filter  power systems  C&I particle swarm optimization  ringdown detection  optimal reactive power dispatch  loss minimization  voltage deviation  hybrid method  tabu search  particle swarm optimization  artificial lighting  simulation  calibration  radiance  GenOpt  street light points  DC optimal power flow  power transfer distribution factors  generalized generation distribution factors  unit commitment  adaptive consensus algorithm  distributed heatelectricity energy management  eight searching subregions  islanded microgrid  dragonfly algorithm  metaheuristic  optimal power flow  particle swarm optimization  CCHP system  energy storage  offdesign performance  dynamic solving framework  battery energy storage system  micro grid  MILP  PCS efficiency  piecewise linear techniques  renewable energy sources  optimal operation  UC  demand bidding  demand response  genetic algorithm  load curtailment  optimization  hybrid renewable energy system  pumpedhydro energy storage  offgrid  optimization  HOMER software  rural electrification  subSaharan Africa  Cameroon  building energy management system  HVAC system  energy storage system  energy flow model  dependability  sustainability  data center  power architectures  optimization  AC/DC hybrid active distribution  hierarchical scheduling  multistakeholders  discrete wind driven optimization  multiobjective optimization  optimal power flow  metaheuristic  wind energy  photovoltaic  smart grid  transformerfault diagnosis  principal component analysis  particle swarm optimization  support vector machine  wind power  integration assessment  interactive load  considerable decomposition  controllable response  SOCP relaxations  optimal power flow  current margins  affine arithmetic  interval variables  optimizingscenarios method  power flow  wind power  active distribution system  virtual power plant  stochastic optimization  decentralized and collaborative optimization  genetic algorithm  multiobjective particle swarm optimization algorithm  artificial bee colony  IEEE Std. 802000  Schwarz’s equation  fuzzy algorithm  radial basis function  neural network  ETAP  distributed generations (DGs)  distribution network reconfiguration  runnerroot algorithm (RRA)  interturn shortedcircuit fault (ISCF)  strong track filter (STF)  linear discriminant analysis (LDA)  switched reluctance machine (SRM)  charging/discharging  electric vehicle  energy management  genetic algorithm  intelligent scatter search  electric vehicles  heterogeneous networks  demand uncertainty  power optimization  Stackelberg game  power system unit commitment  hybrid membrane computing  crossentropy  the genetic algorithm based P system  the biomimetic membrane computing  transient stability  twostage feature selection  particle encoding method  fitness function  power factor compensation  nonsinusoidal circuits  geometric algebra  evolutionary algorithms  electric power contracts  electric energy costs  cost minimization  evolutionary computation  bioinspired algorithms  congestion management  lowvoltage networks  multiobjective particle swarm optimization  affinity propagation clustering  optimal congestion threshold  optimization  magnetic field mitigation  overhead  underground  passive shielding  active shielding  MV/LV substation  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Choose an application
Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of gridconnected converters and ?smart control of power electronics in devices, microgrids, and at system levels.
energy storage  lithiumion battery  battery management system BMS  battery modeling  state of charge SoC  gridconnected inverter  power electronics  multiobjective optimization  switching frequency  total demand distortion  switching losses  EMI filter  power converter  power density  optimal design  electrical drives  axial flux machines  magnetic equivalent circuit  torque ripple  back EMF  permanentmagnet machines  fivephase permanent magnet synchronous machine  fiveleg voltage source inverter  multiphase space vector modulation  sliding mode control  extended Kalman filter  voltage source inverters (VSI)  voltage control  current control  digital control  predictive controllers  advanced controllers  stability  response time  lithiumion batteries  electric vehicles  battery management system  electric power  dynamic PV model  gridconnected VSI  HFlink MPPT converter  nanocrystalline core  SiC PV Supply  DC–DC converters  multilevel control  renewable energy resources control  electrical engineering communications  microgrid control  distributed control  power system operation and control  variable speed pumped storage system  droop control  vector control  phasor model technique  nine switch converter  synchronous generator  digital signal controller  static compensator, distribution generation  hybrid converter  multilevel converter (MLC)  series active filter  power factor correction (PFC)  fieldprogrammable gate array  particle swarm optimization  selective harmonic elimination method  voltage source converter  plugin hybrid electric vehicles  power management system  renewable energy sources  fuzzy  smart microgrid  fivephase machine  faulttolerant control  induction motor  one phase open circuit fault (1Ph)  adjacent twophase open circuit fault (A2Ph)  voltperhertz control (scalar control)  currentfed inverter  LCLS topology  semiactive bridge  soft switching  voltage boost  wireless power transfer  DC–DC conversion  zerovoltage switching (ZVS)  transient control  DC–DC conversion  bidirectional converter  power factor correction  line frequency instability  one cycle control  nonlinear phenomena  bifurcation  boost converter  converter  ice melting  modular multilevel converter (MMC)  optimization design  transmission line  static var generator (SVG)  hardwareintheloop  floatingpoint  fixedpoint  realtime emulation  field programmable gate array  slim DClink drive  VPI active damping control  total harmonic distortion  cogging torque  realtime simulation  power converters  nonlinear control  embedded systems  high level programing  SHIL  DHIL  4T analog MOS control  high frequency switching power supply  water purification  modulation index  electromagnetic interference  chaotic PWM  DCDC buck converter  CMOS chaotic circuit  triangular ramp generator  spreadspectrum technique  system in package  electric vehicle  wireless power transfer  inductive coupling  coupling factor  phaseshift control  seriesseries compensation  PSpice  fixedfrequency double integral slidingmode (FFDISM)  classD amplifier  Qfactor  GaN cascode  direct torque control (DTC)  composite active vectors modulation (CVM)  permanent magnet synchronous motor (PMSM)  effect factors  double layer capacitor (DLC) models  energy storage modelling  simulation models  current control loops  dual threephase (DTP) permanent magnet synchronous motors (PMSMs)  space vector pulse width modulation (SVPWM)  vector control  voltage source inverter  active rectifiers  singleswitch  analog phase control  digital phase control  wireless power transfer  threelevel boost converter (TLBC)  DClink cascade Hbridge (DCLCHB) inverter  conducting angle determination (CAD) techniques  total harmonic distortion (THD)  threephase bridgeless rectifier  fault diagnosis  fault tolerant control  hardware in loop  compensation topology  electromagnetic field (EMF)  electromagnetic field interference (EMI)  misalignment  resonator structure  wireless power transfer (WPT)  WPT standards  EMI filter  electromagnetic compatibility  AC–DC power converters  electromagnetic interference filter  matrix converters  current source  power density  battery energy storage systems  battery chargers  active receivers  frequency locking  reference phase calibration  synchronization  wireless power transfer  lithiumion batteries  SOC estimator  parameter identification  particle swarm optimization  improved extended Kalman filter  battery management system  PMSG  DClink voltage control  variable control gain  disturbance observer  lithiumion power battery pack  composite equalizer  active equalization  passive equalization  control strategy and algorithm  n/a  commonmode inductor  highfrequency modeling  electromagnetic interference  filter  fault diagnosis  condition monitoring  induction machines  support vector machines  expert systems  neural networks  DCAC power converters  frequencydomain analysis  impedancebased model  Nyquist stability analysis  small signal stability analysis  harmonic linearization  line start  permanent magnet  synchronous motor  efficiency motor  rotor design  harmonics  hybrid power filter  active power filter  power quality  total harmonic distortion  equivalent inductance  leakage inductance  switching frequency modelling  induction motor  current switching ripple  multilevel inverter  cascaded topology  voltage doubling  switched capacitor  nearest level modulation (NLM)  total harmonic distortion (THD)  deadtime compensation  power converters  harmonics  n/a
Listing 1  7 of 7 
Sort by
