Search results: Found 6

Listing 1 - 6 of 6
Sort by
Advanced Asphalt Materials and Paving Technologies

Authors: --- ---
ISBN: 9783038428893 9783038428909 Year: Pages: VIII, 422 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering
Added to DOAB on : 2018-05-04 14:22:16
License:

Loading...
Export citation

Choose an application

Abstract

There has been significant research progress in the area of pavement materials and paving technologies in the past decade. This includes the use of warm mix asphalt technologies, rubber asphalt, bio asphalt, nanomaterial applications, new construction technologies, innovative concrete materials, as well as the application of mechanistic–empirical pavement design. With all these developments, a collection of peer-reviewed articles with the theme of advanced asphalt materials and paving technologies is necessary for industry, researchers, government agencies, and other stakeholders. This collection promotes new technology, low costs, high durability, environmental friendliness, and effective resource usage in the area of advanced asphalt materials and paving technologies.

Über den Zusammenhang von Tragfähigkeitsmessergebnissen mit mechanischen Modellgrößen bei Asphaltstraßen

Author:
Book Series: Veröffentlichungen des Institutes für Straßen- und Eisenbahnwesen ISSN: 0344970X ISBN: 9783731502692 Year: Volume: 60 Pages: XV, 175 p. DOI: 10.5445/KSP/1000043258 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: General and Civil Engineering
Added to DOAB on : 2019-07-30 20:01:58
License:

Loading...
Export citation

Choose an application

Abstract

This work examines the mechanical deformation of flexible pavement under vertical load. Mechanical approaches for the computation of the radius of curvature R0 at the centre of the loaded area from HWD data were developed. Material parameter have been backcalculated in an iterative way using rheological models After that the radius of curvature has been subsequently calculated based on mechanical systems.

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210121 / 9783039210138 Year: Pages: 280 DOI: 10.3390/books978-3-03921-013-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210145 / 9783039210152 Year: Pages: 256 DOI: 10.3390/books978-3-03921-015-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Environment-Friendly Construction Materials

Authors: --- --- ---
ISBN: 9783039210169 / 9783039210176 Year: Pages: 270 DOI: 10.3390/books978-3-03921-017-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Construction materials are the most widely used materials for civil infrastructure in our daily lives. However, from an environmental point of view, they consume a huge amount of natural resources and generate the majority of greenhouse gasses. Therefore, many new and novel technologies for designing environmentally friendly construction materials have been developed recently. This Special Issue, “Environment-Friendly Construction Materials”, has been proposed and organized as a means to present recent developments in the field of construction materials. It covers a wide range of selected topics on construction materials.

Keywords

Ca-alginate microcapsules --- microfluidic --- self-healing --- bitumen --- mineral-asphalt mixtures --- aggregate from sanitary ceramic wastes --- environmentally friendly construction materials --- diatomite --- styrene–butadiene–styrene (SBS) modified bitumen --- diatomite-modified asphalt mixture --- road engineering --- fatigue life --- three-point bending fatigue test --- asphalt mixture --- plateau value of permanent deformation ratio --- damage evolution --- fatigue equation --- ultraviolet radiation --- bitumen --- aging depth --- transmittance --- permeation --- expanded graphite --- polyethylene glycol --- phase change materials --- titanate coupling agent --- molecular bridge --- building envelopes --- thermal property --- building energy conservation --- reclaimed asphalt pavement --- recycling --- epoxidized soybean oil --- rejuvenator --- diffusing --- asphalt pavement --- fatigue property --- pavement failure --- long-term field service --- asphalt mixture --- microwave heating --- induction heating --- effective heating depth --- induced healing --- initial self-healing temperature --- asphalt mastic --- flow behavior index --- steel slag --- limestone --- aggregate morphology --- aggregate image measurement system --- micro-surfacing --- skid-resistance --- surface texture --- asphalt --- water solute exposure --- aqueous solute compositions --- chemical evolutions --- rheological properties --- polyacrylic acid --- fluidity --- rheology --- adsorption --- combination --- cement emulsified asphalt mixture --- fatigue performance --- thickness combinations --- X-ray computed tomography --- artificial neural network --- crumb rubber --- high-strength concrete --- damping --- dynamic moduli --- railway application --- recycled material --- recycling --- sanitary ceramics --- concrete --- recycling aggregate --- asphalt mixture --- basalt fiber --- response surface methodology --- design optimization --- fluorescence spectrum --- bitumen --- ageing --- parametrization --- “blue-shift” --- asphalt --- asphalt mortar --- healing agents --- crack healing --- healing model --- ultra-thin wearing course --- self-healing --- induction heating --- steel fiber --- steel slag --- rankinite --- carbonation --- waste concrete --- CO2 --- aged bitumen --- rejuvenator --- solubilizer --- colloidal structure --- micro-morphology --- granite aggregate --- desulphurization gypsum residues --- rubber modified asphalt --- asphalt mixture --- pavement performance --- limestone aggregates --- emulsified asphalt --- demulsification speed --- surface energy --- specific surface area --- artificially aged asphalt mixture --- rejuvenator --- durability --- dynamic characteristics --- overlay tester --- energy-based approach --- dissipated strain energy --- plateau value of dissipated strain energy ratio --- fatigue life --- three-point bending fatigue test --- amorphous silica --- crystallization sensitivity --- water-leaching pretreatment --- rice husk ash --- cement --- crumb rubber --- anti-rutting agent --- flexibility --- field evaluation --- asphalt mixes --- aggregate characteristics --- simplex lattice design --- viscoelastic properties --- asphalt combustion --- flame retardant --- aluminum hydroxide --- layered double hydroxide --- asphalt mixture --- viscoelastic properties --- creep --- relaxation --- aggregates --- morphology --- crumb rubber powder --- SBS/CRP-modified bitumen --- aging processes --- temperature sensitivity characteristics --- diatomite --- basalt fiber --- asphalt mixture --- low-temperature --- damage constitutive model --- graphene --- nitrogen and phosphorus removal --- MDA --- SOD --- sequencing batch Chlorella reactor --- SEM --- thermal–mechanical properties --- bio-oil --- regeneration --- aged asphalt --- molecular dynamic simulation --- viscoelasticity --- nanomaterial --- hydrophobic nanosilica --- hydrophilic nanosilica --- laboratory evaluation --- diatomite --- basalt fiber --- compound modify --- asphalt mixture --- asphalt mixture --- basalt fiber --- freeze-thaw cycle --- damage characteristics --- high-modulus asphalt mixture (HMAM) --- dynamic tests --- viscoelasticity --- dynamic responses --- resistance to deformations --- tensile strains --- tensile stresses --- sensitivity analysis --- hot mix asphalt containing recycled concrete aggregate --- contact angle --- adhesion energy --- water stability --- fatigue performance --- self-compacting concrete (SCC) --- rheology --- workability --- pozzolanic reaction --- microstructure --- Ultra-High Performance Concrete (UHPC) --- long-term drying shrinkage --- hydration characteristic --- porous pumice --- optimization --- engineered cementitious composites (ECC) --- polyvinyl alcohol --- fiber modification --- mechanical behavior --- self-healing --- asphalt --- rejuvenation --- calcium alginate capsules --- asphalt-aggregate adhesion --- plant ash lixivium --- stripping test --- contact angle --- interfacial transition zone --- SBS-modified bitumen --- rejuvenating systems --- physical properties --- viscous-elastic temperature --- rutting factor --- vibration noise consumption --- cold recycled asphalt mixture --- reclaimed asphalt pavement --- mastic --- rheological properties --- emulsified asphalt --- cement --- construction materials --- fatigue life --- ageing resistance --- modified asphalt materials --- rejuvenator --- self-healing asphalt --- recycling --- cold recycled asphalt mixture --- ultra-high performance concrete

Recent Advances in Smart Materials for the Built Environment

Authors: --- ---
ISBN: 9783038973522 9783038973539 Year: Pages: 212 DOI: 10.3390/books978-3-03897-353-9 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials
Added to DOAB on : 2018-12-10 10:27:42
License:

Loading...
Export citation

Choose an application

Abstract

ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms.[The book deals with novel investigations concerning new materials and their applications in the built environment. The built environment of the future will implement innovative solutions for energy efficiency, self-monitoring infrastructures, and self-healing strategies, just to mention the most promising smart material technologies that will most likely assume a pivotal importance in the future. This book is a result of a very multidisciplinary effort aimed at driving the scientific progress of the constructions of the future. The works included in this book concern new materials and coatings for cultural heritage preservation, environmentally sustainable concretes and paving material components, self-healing, and durability strategies.]

Listing 1 - 6 of 6
Sort by
Narrow your search