Search results: Found 3

Listing 1 - 3 of 3
Sort by
Veränderliche 3D Zellgerüstträger auf Cryogelbasis zur Kultivierung von Prostatakarzinomzellen

Author:
Book Series: Schriften des Instituts für Mikrostrukturtechnik am Karlsruher Institut für Technologie / Hrsg.: Institut für Mikrostrukturtechnik ISSN: 18695183 ISBN: 9783731506768 Year: Volume: 35 Pages: XVII, 258 p. DOI: 10.5445/KSP/1000069956 Language: GERMAN
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:01
License:

Loading...
Export citation

Choose an application

Abstract

In this work, three-dimensional (3D) cell scaffolds based on cryogels of different polymers were developed and subsequently used for the cultivation of prostate carcinoma cells. Moreover, different scaffolds on the basis of the silk protein, fibroin, were synthesized and also served as cultivation environment for established prostate cancer cells.

Advances in Epithelial Ovarian Cancer: Model Systems, Microenvironmental Influences, Therapy, and Origins

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197699 Year: Pages: 176 DOI: 10.3389/978-2-88919-769-9 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

This eBook provides a compendium of the current state-of-the-art in research tools for, and understanding of, the critical research areas in epithelial ovarian cancer (EOC) with a strong emphasis on (HG-SOC). Research areas covered include therapy response and development, microenvironmental influences and the etiology and progression of EOC. Ten articles detail established and novel in vivo and in vitro model systems. These include primary and immortalized cell culture in 2D and 3D as well as genetically engineered, transgenic, spontaneous, syngeneic, classical xenograft and patient derived xenograft mouse models. The generation of genetically engineered mouse models of HG-SOC has been a major dilemma as models with the oncogenic aberrations common in the human malignancy do not accurately recapitulate HG-SOC. Conversely, commonly used HG-SOC cell lines have been found to not harbor the expected genetic changes. These issues as well as the rapid acceptance of patient derived xenograft models are reviewed. Five articles discuss different aspects of the tumor microenvironment including its role in therapy resistance, disease progression and metastasis. Mutation of BRCA1/2 continues to be the best defined risk factor for HG-SOC. Three articles discuss BRCA-loss in the context of disease development, targeted therapies and changes in preventative measures proposed for mutation carriers in light of the recent advances in knowledge regarding the origins of this malignancy. An image of HG-SOC with patchy BRCA1 expression is featured on the cover (image by VM Howell). A major clinical issue for patients with HG-SOC is the development of therapy resistance. Five articles focus on therapy resistance and different ways to overcome resistance. Overall, this eBook is an outstanding resource to aid researchers design their programs of research and determine the most appropriate and up-to-date EOC model systems to address their research questions.

Organs-on-chips

Authors: ---
ISBN: 9783039289172 / 9783039289189 Year: Pages: 262 DOI: 10.3390/books978-3-03928-918-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Recent advances in microsystems technology and cell culture techniques have led to the development of organ-on-chip microdevices that produce tissue-level functionality, not possible with conventional culture models, by recapitulating natural tissue architecture and microenvironmental cues within microfluidic devices.

Keywords

microfluidics --- vascularization --- organ-on-a-chip --- vascularized tumor model --- tissue engineering --- microfluidic device --- cell culture --- organ-on-chips --- lung epithelial cell --- surfactant protein --- angiogenesis --- shear stress --- biomechanics --- vessel branching --- beating force --- bio-mechanical property --- cardiac 3D tissue --- human induced pluripotent Stem cell-derived cardiomyocytes (hiPS-CM) --- tissue engineering --- vacuum chuck --- barrier permeability --- epithelial–endothelial interface --- paracellular/transcellular transport --- organ-on-chip --- MEMS --- silicon --- PDMS --- membranes --- cell --- strain --- stress --- lattice light-sheet microscopy --- 3D cell culture system --- functional neuron imaging --- 3D cell culture --- neuronal cells --- SH-SY5Y cells --- image-based screening --- nanogrooves --- neuronal cell networks --- neuronal guidance --- drug metabolism --- biomimetic oxidation --- microfluidics --- organ-on-a-chip --- liver-on-a-chip --- liver-on-a-chip --- drug hepatotoxicity --- drug metabolism --- organoid --- 3D cell culture --- spheroid array --- high-throughput screening --- drug efficacy --- organ-on-a-chip (OOC) --- microfluidic device --- mechanical cue --- shear flow --- compression --- stretch --- strain --- syringe pump --- integrated pump --- passive delivery --- organs-on-chips --- microfluidics --- drug absorption --- fluoroelastomer --- ischemia/reperfusion injury --- thrombolysis --- organ-on-a-chip --- endothelial cell activation --- microfluidics --- microfabrication --- organ-on-a-chip --- trans-epithelial electrical resistance --- multi-culture --- n/a

Listing 1 - 3 of 3
Sort by