Search results: Found 2

Listing 1 - 2 of 2
Sort by
Nanoparticle-Reinforced Polymers

Author:
ISBN: 9783039212835 / 9783039212842 Year: Pages: 334 DOI: 10.3390/books978-3-03921-284-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book, a collection of 12 original contributions and 4 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of polymeric nanocomposites comprising nanoparticles. The concept of nanoparticle-reinforced polymers came about three decades ago, following the outstanding discovery of fullerenes and carbon nanotubes. One of the main ideas behind this approach is to improve the matrix mechanical performance. The nanoparticles exhibit higher specific surface area, surface energy, and density compared to microparticles and, hence, lower nanofiller concentrations are needed to attain properties comparable to, or even better than, those obtained by conventional microfiller loadings, which facilitates processing and minimizes the increase in composite weight. The addition of nanoparticles into different polymer matrices opens up an important research area in the field of composite materials. Moreover, many different types of inorganic nanoparticles, such as quantum dots, metal oxides, and ceramic and metallic nanoparticles, have been incorporated into polymers for their application in a wide range of fields, ranging from medicine to photovoltaics, packaging, and structural applications.

Keywords

chemical and physical interface --- surface modification of silica --- latex compounding method --- silica/NR composite --- thermoresponsive hyperbranched polymer --- gold nanoparticles --- in-situ synthesis --- colorimetric sensor --- silver ions --- Ag nanoparticles --- catalysis --- composite membrane --- separation --- SiO2 microspheres --- inorganic nanotubes --- PHBV --- nanomaterials --- morphology --- crystallization kinetics --- nanocomposite --- conductive polymer --- solar cell --- graphene --- graphene oxide --- power-conversion efficiency --- electrode --- active layer --- interfacial layer --- layered structures --- polymer-matrix composites --- mechanical properties --- gas barrier properties --- N-isopropylacrylamide --- N-isopropylmethacrylamide --- ratiometric temperature sensing --- FRET --- chain topology --- selective adsorption --- polymer-NP interface --- organic light-emitting diodes (OLEDs) --- PFO/MEH-PPV hybrids --- SiO2/TiO2 nanocomposite --- optoelectronic properties --- fluorescent assay --- fluorescence resonance energy transfer --- conjugated polymer nanoparticles --- gold nanoparticles --- melamine --- polymers --- composites --- carbon nanoparticles --- nano-hybrids --- nanocomposites --- sol–gel --- in situ synthesis --- metal oxides --- reduced graphene oxide --- graphene-like WS2 --- bismaleimide --- mechanical properties --- carrier transport --- polypropylene nanocomposite --- molecular chain motion --- electrical breakdown --- electric energy storage --- thermoplastic nanocomposite --- polyethylene --- power cable insulation --- electrical property --- structure-property relationship --- hybrid hydrogels --- nanoparticles --- nanosheets --- clays --- polymers --- adhesion --- n/a

Clean Energy and Fuel (Hydrogen) Storage

Authors: ---
ISBN: 9783039216307 / 9783039216314 Year: Pages: 278 DOI: 10.3390/books978-3-03921-631-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Keywords

dye-sensitized solar cells --- carbon materials --- Ag nanoparticles --- freestanding TiO2 nanotube arrays --- gas turbine engine --- lean direct injection --- four-point --- low emissions combustion --- carbonate gas reservoirs --- water invasion --- recovery factor --- aquifer size --- production rate --- hydrogen storage --- complex hydrides --- nanocatalyst --- LiNH2 --- MgH2 --- ball milling --- Li-ion batteries --- nanocomposite materials --- cathode --- anode --- binder --- separator --- ionic liquid --- vertically oriented graphene --- electrical double layers --- charge density --- capacitance --- gas storage --- material science --- rock permeability --- synthetic rock salt testing --- Klinkenberg method --- hydrogen storage systems --- hydrogen absorption --- thermochemical energy storage --- metal hydride --- magnetism --- heat transfer enhancement --- Power to Liquid --- Fischer–Tropsch --- dynamic modeling --- lab-scale --- lithium-ion batteries --- simplified electrochemical model --- state of charge estimator --- extended kalman filter --- hot summer and cold winter area --- PCM roof --- comprehensive incremental benefit --- conjugate phase change heat transfer --- lattice Boltzmann method --- large-scale wind farm --- auxiliary services compensation --- battery energy storage system --- optimal capacity --- equivalent loss of cycle life --- hydrogen storage --- porous media --- bacterial sulfate reduction --- methanogenesis --- gas loss --- diffusion --- reactive transport modeling --- PHREEQC --- energy discharge --- bubbles burst --- bubbles transportation --- crystal growth rates --- undercooling --- salt cavern --- leaching tubing --- flutter instability --- flow-induced vibration --- internal and reverse external axial flows --- thermal energy storage (TES) --- slag --- regenerator --- concentrated solar power (CSP) --- quality function deployment (QFD) --- failure mode and effect analysis (FMEA) --- thermal energy storage --- electrochemical energy storage --- hydrogen energy storage --- salt cavern energy storage

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (2)


License

CC by-nc-nd (2)


Language

eng (2)


Year
From To Submit

2019 (2)