Search results: Found 2

Listing 1 - 2 of 2
Sort by
AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications

Author:
Book Series: Karlsruher Forschungsberichte aus dem Institut für Hochfrequenztechnik und Elektronik ISSN: 18684696 ISBN: 9783866446151 Year: Volume: 62 Pages: XI, 230 p. DOI: 10.5445/KSP/1000021579 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

This work has arisen out of the strong demand for a superior power-added efficiency (PAE) of AlGaN/GaN high electron mobility transistor (HEMT) high-power amplifiers (HPAs) that are part of any advanced wireless multifunctional RF-system with limited prime energy. Different concepts and approaches on device and design level for PAE improvements are analyzed, e.g. structural and layout changes of the GaN transistor and advanced circuit design techniques for PAE improvements of GaN HEMT HPAs.

Wide Bandgap Semiconductor Based Micro/Nano Devices

Author:
ISBN: 9783038978428 9783038978435 Year: Pages: 138 DOI: 10.3390/books978-3-03897-843-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

While group IV or III-V based device technologies have reached their technical limitations (e.g., limited detection wavelength range or low power handling capability), wide bandgap (WBG) semiconductors which have band-gaps greater than 3 eV have gained significant attention in recent years as a key semiconductor material in high-performance optoelectronic and electronic devices. These WBG semiconductors have two definitive advantages for optoelectronic and electronic applications due to their large bandgap energy. WBG energy is suitable to absorb or emit ultraviolet (UV) light in optoelectronic devices. It also provides a higher electric breakdown field, which allows electronic devices to possess higher breakdown voltages. This Special Issue seeks research papers, short communications, and review articles that focus on novel synthesis, processing, designs, fabrication, and modeling of various WBG semiconductor power electronics and optoelectronic devices.

Keywords

optical band gap --- tungsten trioxide film --- annealing temperature --- electrochromism --- AlGaN/GaN HEMT --- DIBL effect --- channel length modulation --- power amplifier --- W band --- high electron mobility transistors --- high electron mobility transistor (HEMT) --- AlGaN/GaN --- ohmic contact --- regrown contact --- ammonothermal GaN --- power amplifier --- I–V kink effect --- AlGaN/GaN HEMT --- large signal performance --- 4H-SiC --- MESFET --- ultrahigh upper gate height --- power added efficiency --- harsh environment --- space application --- 1T DRAM --- wide-bandgap semiconductor --- high-temperature operation --- TCAD --- amorphous InGaZnO (a-IGZO) --- thin-film transistor (TFT) --- positive gate bias stress (PGBS) --- passivation layer --- characteristic length --- edge termination --- silicon carbide (SiC) --- junction termination extension (JTE) --- breakdown voltage (BV) --- Ku-band --- GaN high electron mobility transistor (HEMT) --- power amplifier --- asymmetric power combining --- amplitude balance --- phase balance --- micron-sized patterned sapphire substrate --- growth of GaN --- sidewall GaN --- flip-chip light-emitting diodes --- distributed Bragg reflector --- light output power --- external quantum efficiency --- threshold voltage (Vth) stability --- gallium nitride (GaN) --- high electron mobility transistors (HEMTs) --- analytical model --- high-temperature operation --- T-anode --- GaN --- buffer layer --- anode field plate (AFP) --- cathode field plate (CFP) --- n/a

Listing 1 - 2 of 2
Sort by
Narrow your search