Search results: Found 7

Listing 1 - 7 of 7
Sort by
New Translational Insights on Metabolic Syndrome: Obesity, Hypertension, Diabetes and Beyond

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199242 Year: Pages: 114 DOI: 10.3389/978-2-88919-924-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Metabolic syndrome (MetS) can be considered as a clustering of several risk factors such as obesity, hypertension, insulin resistance and dyslipidemia, which could lead to the development of diabetes and cardiovascular diseases (CVD). There are several underlying causes for MetS including overweight, physical inactivity and genetic factors. However, the underlying mechanisms that leads to MetS are still poorly understood. Therefore, the aim of this E-book is to provide a space where researchers holding different backgrounds could shed some light onto the pathophysiology of different risk factors involved in MetS, mostly from translational research worldwide.

M1/M2 Macrophages: The Arginine Fork in the Road to Health and Disease

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194995 Year: Pages: 280 DOI: 10.3389/978-2-88919-499-5 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Macrophages have unique and diverse functions necessary for survival. And, in humans (and other species), they are the most abundant leukocytes in tissues. The Innate functions of macrophages that are best known are their unusual ability to either "Kill" or "Repair". Since killing is a destructive process and repair is a constructive process, it was stupefying how one cell could exhibit these 2 polar – opposite functions. However, in the late 1980’s, it was shown that macrophages have a unique ability to enzymatically metabolize Arginine to Nitric Oxide (NO, a gaseous non – specific killer molecule) or to Ornithine (a precursor of polyamines and collagen for repair). The dual Arginine metabolic capacity of macrophages provided a functional explanation for their ability to kill or repair. Macrophages predominantly producing NO are called M1 and those producing Ornithine are called M2. M1 and M2 – dominant responses occur in lower vertebrates, and in T cell deficient vertebrates being directly driven by Damage and Pathogen Associated Molecular Patterns (DAMP and PAMP). Thus, M1 and M2 are Innate responses that protect the host without Adaptive Immunity. In turn, M1/M2 is supplanting previous models in which T cells were necessary to "activate" or "alternatively activate" macrophages (the Th1/Th2 paradigm). M1 and M2 macrophages were named such because of the additional key findings that these macrophages stimulate Th1 and Th2 – like responses, respectively. So, in addition to their unique ability to kill or repair, macrophages also govern Adaptive Immunity. All of the foregoing would be less important if M1 or M2 – dominant responses were not observed in disease. But, they are. The best example to date is the predominance of M2 macrophages in human tumors where they act like wound repair macrophages and actively promote growth. More generally, humans have become M2 – dominant because sanitation, antibiotics and vaccines have lessened M1 responses. And, M2 dominance seems the cause of ever - increasing allergies in developed countries. Obesity represents a new and different circumstance. Surfeit energy (e.g., lipoproteins) causes monocytes to become M1 dominant in the vessel walls causing plaques. Because M1 or M2 dominant responses are clearly causative in many modern diseases, there is great potential in developing the means to selectively stimulate (or inhibit) either M1 or M2 responses to kill or repair, or to stimulate Th1 or Th2 responses, depending on the circumstance. The contributions here are meant to describe diseases of M1 or M2 dominance, and promising new methodologies to modulate the fungible metabolic machinery of macrophages for better health.

Keywords

macrophage --- innate immunity --- M1 --- M2 --- wound --- Cancer --- Infection --- Atherosclerosis

Perivascular Adipose Tissue (PVAT) in Health and Disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456031 Year: Pages: 158 DOI: 10.3389/978-2-88945-603-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

In 1991, Soltis and Cassis (Clin Exp Hypertens A 1991 13:277-296) published the first paper that the fat tissue around an artery – perivascular adipose tissue or PVAT – changed how the artery contracted to norepinephrine. Followed later by important work showing that PVAT itself contained vasoactive molecules, the scientific community recognized that PVAT was not simply a store of fat but is a vasoactive tissue that contributes to the functioning and status of the vessel it surrounds. Our goal for this Frontiers Research Topic is to highlight the significant reach of PVAT in vascular function, from contractility to growth in health and in disease. In doing so, we explicitly place findings that can be taken advantage of in creating new therapies for cardiovascular diseases that continue to challenge our community. These include hypertension, atherosclerosis, and diabetes to name a few.

Function of Renal Sympathetic Nerves

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452958 Year: Pages: 96 DOI: 10.3389/978-2-88945-295-8 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Sympathetic overactivity is associated with the development of hypertension. Renal denervation (RDN) prevents or delays hypertension in a variety of animal models, which laid the groundwork for the introduction of RDN as a clinical therapy in humans. In 2007, a novel, minimally invasive RDN ablation catheter was first trialled in hypertensive patients, with a 93% success rate of lowering blood pressure for at least three years post-RDN. However, a large scale, sham-controlled clinical trial (Symplicity HTN -3) failed to show reductions in BP greater than sham. The aim of this research topic was to evaluate the efficacy and safety of RDN, to explore the contribution of both afferent and efferent renal nerve activity to hypertension and non-hypertension disorders, and to stimulate future research to better understand the function of the renal nerves and the effects of RDN by highlighting gaps in knowledge.

Extracellular Vesicle-Mediated Processes in Cardiovascular Diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889456208 Year: Pages: 118 DOI: 10.3389/978-2-88945-620-8 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

It is long known that many cells can shed extracellular vesicles, small membrane-enclosed cell fragments. Although the existence of extracellular vesicles has been recognized for many years, researchers are only beginning to understand their physiologic significance. Several recent studies have demonstrated that extracellular vesicles released from cells serve as a mode of cellular communication. They can carry diverse molecular payload (e.g. nucleic acids, bioactive lipids and proteins) to distal organs and recipient cells. Extracellular vesicles can be classified into three major groups: exosomes, microvesicles, and apoptotic bodies. All these types of extracellular vesicles can be found in a variety of biologic specimen and their numbers, distribution and composition may serve as biomarkers for various disorders, including cardiovascular disease. Although extracellular vesicle-mediated processes are currently best characterized in the fields of cancer biology and neurobiology, evidence is accumulating that extracellular vesicles play a key role in the pathophysiology of diabetes, thrombosis, inflammation and cardiovascular calcification.In this Research Topic, we invited review and methodological articles that advance our understanding of extracellular vesicle-related processes in vascular biology.

Mechanisms of Adiponectin Action

Author:
ISBN: 9783039212453 / 9783039212460 Year: Pages: 222 DOI: 10.3390/books978-3-03921-246-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Social Sciences --- Sociology
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The adipokine adiponectin is very concentrated in plasma, and decreased levels of adiponectin are associated with pathological conditions such as obesity, diabetes, cardiovascular diseases, and metabolic syndrome. When produced in its full-length form, adiponectin self-associates to generate multimeric complexes. The full-length form of adiponectin can be cleaved by the globular form of elastase that is produced locally, and the resulting biological effects are exerted in a paracrine or autocrine manner. The different forms of adiponectin bind to specific receptors consisting of two G-protein-independent, seven-transmembrane-spanning receptors, called AdipoR1 and AdipoR2, while T-cadherin has been identified as a potential receptor for high molecular weight complexes of adiponectin. Adiponectin exerts a key role in cellular metabolism, regulating glucose levels as well as fatty acid breakdown. However, its biological effects are heterogeneous, involving multiple target tissues. The Special Issue “Mechanisms of Adiponectin Action” highlights the pleiotropic role of this hormone through 3 research articles and 7 reviews. These papers focus on the recent knowledge regarding adiponectin in different target tissues, both in healthy and in diseased conditions.

Chemical Biology of Sterols, Triterpenoids and Other Natural Products: A Themed Issue in Honor of Professor W. David Nes on the Occasion of His 65th Birthday

Authors: ---
ISBN: 9783038974161 / 9783038974178 Year: Pages: 256 DOI: 10.3390/books978-3-03897-417-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Sterols and other isoprenoids are of great interest for their molecular structure and function in cell architecture and evolution, as well as for their importance in medicine and agriculture. Molecules’ 2019 Festschrift Special Issue in honor of the 65th birthday of Prof. W. David Nes, an internationally recognized chemical biologist and recipient of the George Schroepher medal for sterol research, focuses on recent developments in the chemistry, biosynthesis, and function of these polycyclic natural products. This volume of Molecules contains 16 leading-edge review articles and original research contributions from an international cast of scientists. This volume is grouped into three sections: (i) isoprenoid metabolome and diversity, (ii) clinical evaluation of sterol and triterpene structures and biosynthesis, and (iii) methods and synthesis of steroids and other compounds. The volume will be a valuable reference tool for those who study medicinal chemistry, protein chemistry, and biochemistry of isoprenoid lipids.

Keywords

Zingiber officinale --- gingerols --- cytotoxic activity --- oleanolic acid --- high-fat high-carbohydrate diet --- pre-diabetes --- glucose homeostasis --- insulin resistance --- atherosclerosis --- ROS --- HUVECs --- LOX-1 --- alkaloid --- granatane --- N-methylcadaverine --- N-methylpiperidine. reductive deamination --- Mucorales --- Rhizopus arrhizus --- sterol pattern --- antifungal effectivity --- gas chromatography-mass spectrometry (GC-MS) --- posaconazole --- sterol biosynthesis --- sterol 14?-demethylase --- sterol C24-methyltransferase --- mechanism-based inactivators --- antifungals --- azoles --- antiparasitic drugs --- human African trypanosomiasis --- Chagas disease --- synthesis --- squalene cyclase --- cycloartenol synthase --- triterpene --- fern --- Polystichum --- terpene --- isoprenoid --- divalent metal co-factor ligation --- antioxidant --- cholesterol --- degeneration --- oxysterol --- retina --- Smith-Lemli-Opitz syndrome --- algal sterols --- ergosterol biosynthesis --- infectious disease --- lipidomics --- oxyphytosterol --- pharmacognosy --- phytosterol --- sterolomics --- lupeol --- keratinocytes --- fibroblasts --- wound healing --- cell migration --- UV-radiation --- ZnO --- toxicity --- sterol content --- cholesterol --- leishmania --- solanaceae --- withanolides --- aurelianolides --- phytosterols --- mesocarp --- oilseed --- maturity --- pod-blast --- ?-tocopherol --- oil bodies --- campesterol --- stigmasterol --- ?-sitosterol --- sterol --- C4-demethylation complex (C4DMC) --- 4-methylsterol --- hormone --- steroid --- development --- genetic disease --- bile alcohol --- cholestanoic acid --- oxysterol --- sterolomics --- enzyme-assisted derivatization --- electrospray ionization-mass spectrometry --- Girard reagent --- n/a

Listing 1 - 7 of 7
Sort by
Narrow your search