Search results: Found 2

Listing 1 - 2 of 2
Sort by
Self-Organization in the Nervous System

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453405 Year: Pages: 135 DOI: 10.3389/978-2-88945-340-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

This special issue reviews state-of-the-art approaches to the biophysical roots of cognition. These approaches appeal to the notion that cognitive capacities serve to optimize responses to changing external conditions. Crucially, this optimisation rests on the ability to predict changes in the environment, thus allowing organisms to respond pre-emptively to changes before their onset. The biophysical mechanisms that underwrite these cognitive capacities remain largely unknown; although a number of hypotheses has been advanced in systems neuroscience, biophysics and other disciplines. These hypotheses converge on the intersection of thermodynamic and information-theoretic formulations of self-organization in the brain. The latter perspective emerged when Shannon’s theory of message transmission in communication systems was used to characterise message passing between neurons. In its subsequent incarnations, the information theory approach has been integrated into computational neuroscience and the Bayesian brain framework. The thermodynamic formulation rests on a view of the brain as an aggregation of stochastic microprocessors (neurons), with subsequent appeal to the constructs of statistical mechanics and thermodynamics. In particular, the use of ensemble dynamics to elucidate the relationship between micro-scale parameters and those of the macro-scale aggregation (the brain). In general, the thermodynamic approach treats the brain as a dissipative system and seeks to represent the development and functioning of cognitive mechanisms as collective capacities that emerge in the course of self-organization. Its explicanda include energy efficiency; enabling progressively more complex cognitive operations such as long-term prediction and anticipatory planning. A cardinal example of the Bayesian brain approach is the free energy principle that explains self-organizing dynamics in the brain in terms of its predictive capabilities – and selective sampling of sensory inputs that optimise variational free energy as a proxy for Bayesian model evidence. An example of thermodynamically grounded proposals, in this issue, associates self-organization with phase transitions in neuronal state-spaces; resulting in the formation of bounded neuronal assemblies (neuronal packets). This special issue seeks a discourse between thermodynamic and informational formulations of the self-organising and self-evidencing brain. For example, could minimization of thermodynamic free energy during the formation of neuronal packets underlie minimization of variational free energy?

Visual Mismatch Negativity (vMMN) a Prediction Error Signal in the Visual Modality

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889195602 Year: Pages: 202 DOI: 10.3389/978-2-88919-560-2 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Current theories of visual change detection emphasize the importance of conscious attention to detect unexpected changes in the visual environment. However, an increasing body of studies shows that the human brain is capable of detecting even small visual changes, especially if such changes violate non-conscious probabilistic expectations based on repeating experiences. In other words, our brain automatically represents statistical regularities of our visual environmental. Since the discovery of the auditory mismatch negativity (MMN) event-related potential (ERP) component, the majority of research in the field has focused on auditory deviance detection. Such automatic change detection mechanisms operate in the visual modality too, as indicated by the visual mismatch negativity (vMMN) brain potential to rare changes. VMMN is typically elicited by stimuli with infrequent (deviant) features embedded in a stream of frequent (standard) stimuli, outside the focus of attention. In this research topic we aim to present vMMN as a prediction error signal. Predictive coding theories account for phenomena such as mismatch negativity and repetition suppression, and place them in a broader context of a general theory of cortical responses. A wide range of vMMN studies has been presented in this Research Topic. Twelve articles address roughly four general sub-themes including attention, language, face processing, and psychiatric disorders. Additionally, four articles focused on particular subjects such as the oblique effect, object formation, and development and time-frequency analysis of vMMN. Furthermore, a review paper presented vMMN in a hierarchical predictive coding framework. Each paper in this Research Topic is a valuable contribution to the field of automatic visual change detection and deepens our understanding of the short term plasticity underlying predictive processes of visual perceptual learning.

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2017 (1)

2015 (1)