Search results: Found 7

Listing 1 - 7 of 7
Sort by
Biosignal processing and computational methods to enhance sensory motor neuroprosthetics

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197187 Year: Pages: 228 DOI: 10.3389/978-2-88919-718-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Though there have been many developments in sensory/motor prosthetics, they have not yet reached the level of standard and worldwide use like pacemakers and cochlear implants. One challenging issue in motor prosthetics is the large variety of patient situations, which depending on the type of neurological disorder. To improve neuroprosthetic performance beyond the current limited use of such systems, robust bio-signal processing and model-based control involving actual sensory motor state (with biosignal feedback) would bring about new modalities and applications, and could be a breakthrough toward adaptive neuroprosthetics. Recent advances of Brain Computer Interfaces (BCI) now enable patients to transmit their intention of movement. However, the functionality and controllability of motor prosthetics itself can be further improved to take advantage of BCI interfaces. In this Research Topic we welcome contribution of original research articles, computational and experimental studies, review articles, and methodological advances related to biosignal processing that may enhance the functionality of sensory motor neuroprosthetics. The scope of this topic includes, but is not limited to, studies aimed at enhancing: 1) computational biosignal processing in EMG (Electromyography), EEG (Electroencephalography), and other modalities of biofeedback information;2) the computational method in modeling and control of sensory motor neuroprosthetics;3) the systematic functionality aiming to provide solutions for specific pathological movement disorders;4) human interfaces such as BCI - but in the case of BCI study, manuscripts should be experimental studies which are applied to sensory/motor neuroprosthetics in patients with motor disabilities.

Evolving BCI Therapy - Engaging Brain State Dynamics

Author:
ISBN: 9781789840698 9781789840704 Year: Pages: 166 DOI: 10.5772/intechopen.71592 Language: English
Publisher: IntechOpen
Subject: Computer Science
Added to DOAB on : 2019-10-03 07:51:52

Loading...
Export citation

Choose an application

Abstract

As a strategic response to cognitive and CNS impairments, BCI is a theoretical outgrowth of several generations of endogenous devices for peripheral nerves, which have as a prime goal the direct replacement of lost neural function. In these earlier applications therapeutic intervention has been premised only on the restoration of signal generating capacity where nerve transmission is largely unidirectional and temporally sequenced. It is increasingly apparent, however, that the brain not only employs a very different type of syntax from that of peripheral nerves but also structures the semantic content of motor activity, fundamentally altering the conception of BCI as a therapeutic medium. The book presented here documents this change, proposing a multi-faceted strategy in which BCI therapy can restore the loss of multi-tiered, brain based motor function.

Interaction of BCI with the underlying neurological conditions in patients: pros and cons

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194896 Year: Pages: 129 DOI: 10.3389/978-2-88919-489-6 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

The primary purpose of Brain Computer Interface (BCI) systems is to help patients communicate with their environment or to aid in their recovery. A common denominator for all BCI patient groups is that they suffer from a neurological deficit. As a consequence, BCI systems in clinical and research settings operate with control signals (brain waves) that could be substantially altered compared to brain waves of able-bodied individuals. Most BCI systems are built and tested on able-bodied individuals, being insufficiently robust for clinical applications. The main reason for this is a lack of systematic analysis on how different neurological problems affect the BCI performance. Neurological problems interfering with BCI performance are either a direct cause of a disability (e.g. stroke, autism, epilepsy ) or secondary consequences of a disability, often overlooked in design of BCI systems (chronic pain, spasticity and antispastic drugs, loss of cognitive functions, drowsiness, medications which are increasing/decreasing brain activity in certain frequency range) . While some of these deficits may decrease the performance of a BCI, others may potentially improve its performance compared to BCI tested on a healthy population (e.g. overactivation of motor cortex in patients with Central neuropathic pain (CNP), increased alpha activity in some patient groups). Depending on the neurological condition, a prolonged modulation of brain waves through BCI might produce both positive or detrimental effects. Thus some BCI protocols might be more suitable for a short term use (e.g. rehabilitation of movement) while the others would be more suitable for a long term use. Prolonged self-regulation of brain oscillation through BCI could potentially be used as a treatment for aberrant brain connections for conditions ranging from motor deficits to Autism Spectrum Disorders (ASD). Currently, ASD is an increasingly prevalent condition in the U.S. with core deficits in imitation learning, language, empathy, theory of mind, and self-awareness. Understanding its neuroetiology is not only critical and necessary but should provide relevant insights into the relationship between neuroanatomy, physiology and behaviour. In this Research Topic we welcome studies of the highest scientific quality highlighting how BCI systems based on different principles (SSVEP, P300, slow cortical potential, auditory potential, operant conditioning, etc) interact with the underlying neurological problems and how performance of these BCI system differ compared to similar systems tested on healthy individuals. We also welcome studies defining signatures of neurological disorders and proposing BCI based treatments. We expect to generate a body of knowledge valuable both to researchers working with clinical populations, but also to a vast majority of BCI researchers testing new algorithms on able-bodied people. This should lead towards more robust or tailor-made BCI protocols, facilitating translation of research from laboratories to the end users.

Intelligent Human Computer Interaction: 9th International Conference, IHCI 2017, Evry, France, December 11-13, 2017, Proceedings

Authors: --- ---
Book Series: Information Systems and Applications, incl. Internet/Web, and HCI ISSN: 0302-9743 ISBN: 9783319720371 9783319720388 Year: Volume: 10688 Pages: 216 DOI: https://doi.org/10.1007/978-3-319-72038-8 Language: English
Publisher: Springer Grant: Telecom SudParis
Subject: Computer Science
Added to DOAB on : 2018-06-29 10:52:43
License:

Loading...
Export citation

Choose an application

Abstract

This book constitutes the thoroughly refereed proceedings of the 9th International Conference on Intelligent Human Computer Interaction, IHCI 2017, held in Evry, France, in December 2017.The 15 papers presented together with three invited papers were carefully reviewed and selected from 25 submissions. The conference is forum for the presentation of technological advances and research results at the crossroads of human-computer interaction, artificial intelligence, signal processing and computer vision.

Using neurophysiological signals that reflect cognitive or affective state

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889196135 Year: Pages: 314 DOI: 10.3389/978-2-88919-613-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-08-16 10:34:25
License:

Loading...
Export citation

Choose an application

Abstract

What can we learn from spontaneously occurring brain and other physiological signals about an individual’s cognitive and affective state and how can we make use of this information? One line of research that is actively involved with this question is Passive Brain-Computer-Interfaces (BCI). To date most BCIs are aimed at assisting patients for whom brain signals could form an alternative output channel as opposed to more common human output channels, like speech and moving the hands. However, brain signals (possibly in combination with other physiological signals) also form an output channel above and beyond the more usual ones: they can potentially provide continuous, online information about an individual’s cognitive and affective state without the need of conscious or effortful communication. The provided information could be used in a number of ways. Examples include monitoring cognitive workload through EEG and skin conductance for adaptive automation or using ERPs in response to errors to correct for a behavioral response. While Passive BCIs make use of online (neuro)physiological responses and close the interaction cycle between a user and a computer system, (neuro)physiological responses can also be used in an offline fashion. Examples of this include detecting amygdala responses for neuromarketing, and measuring EEG and pupil dilation as indicators of mental effort for optimizing information systems. The described field of applied (neuro)physiology can strongly benefit from high quality scientific studies that control for confounding factors and use proper comparison conditions. Another area of relevance is ethics, ranging from dubious product claims, acceptance of the technology by the general public, privacy of users, to possible effects that these kinds of applications may have on society as a whole. In this Research Topic we aimed to publish studies of the highest scientific quality that are directed towards applications that utilize spontaneously, effortlessly generated neurophysiological signals (brain and/or other physiological signals) reflecting cognitive or affective state. We especially welcomed studies that describe specific real world applications demonstrating a significant benefit compared to standard applications. We also invited original, new kinds of (proposed) applications in this area as well as comprehensive review articles that point out what is and what is not possible (according to scientific standards) in this field. Finally, we welcomed manuscripts on the ethical issues that are involved. Connected to the Research Topic was a workshop (held on June 6, during the Fifth International Brain-Computer Interface Meeting, June 3-7, 2013, Asilomar, California) that brought together a diverse group of people who were working in this field. We discussed the state of the art and formulated major challenges, as reflected in the first paper of the Research Topic.

Trends in Neuroergonomics: A Comprehensive Overview

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452033 Year: Pages: 402 DOI: 10.3389/978-2-88945-203-3 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2017-10-13 14:57:01
License:

Loading...
Export citation

Choose an application

Abstract

This Research Topic is dedicated to Raja Parasuraman who unexpectedly passed on March 22nd 2015. Raja Parasuraman’s pioneering work led the emergence of Neuroergonomics as a new scientific field. He combined his research interests in the field of Neuroergonomics which he defined as the study of the human brain in relation to performance at work and everyday settings. Raja Parasuraman was a pioneer, a truly exceptional researcher and an extraordinary person. He made significant contributions to a number of disciplines, from human factors to cognitive neuroscience. His advice to young researchers was to be passionate in order to develop theory and knowledge that can guide the design of technologies and environments for people. His legacy, the field of Neuroergonomics, will live on in countless faculties and students whom he advised and inspired with unmatched humility throughout the whole of his distinguished career. Raja Parasuraman was an impressive human being, a very kind person, and an absolutely inspiring individual who will be remembered by everyone who had the chance to meet him. About this Research Topic Since the advent of neuroergonomics, significant progress has been made with respect to methodology and tools for the investigation of the brain and behavior at work. This is especially the case for neuroscientific methods where the availability of ambulatory hardware, wearable sensors and advanced data analyses allow for imaging of brain dynamics in humans in applied environments. Methods such as: electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and stimulation approaches like transcranial direct-currrent stimulation (tDCS) have made significant progress in both recording and altering brain activity while allowing full body movements outside laboratory environments. For neuroergonomics, the application of brain imaging in real-world scenarios is highly relevant. Traditionally, brain imaging experiments in human factors research tend to avoid active behavior for fear of artifacts and a contaminated data set that would provide limited insight into brain dynamics in real working environments. To overcome these problems new analyses approaches have to be developed that identify artifacts resulting from hostile recording environments and movement-related non-brain activity stemming from eye-, head, and full-body movements. The application of methodology from the field of Brain-Computer Interfacing (BCI) for neuroergonomics is one approach that has significant potential to enhance ambulatory monitoring and applied testing. Passive BCIs allow for assessing aspects of the user state online, such that systems can automatically adapt to their user. This neuroadaptive technology could lead to highly efficient working environments, to auto-adaptive experimental paradigms and to a continuous tracking of cognitive and affective aspects of the user state. Hence, deployment of portable neuroimaging technologies to real time settings could help assess cognitive and motivational states of personnel assigned to perform critical tasks. This Research Topic gathers submissions that cover new approaches in neuroergonomics. Different article type cover advanced neuroscience methods and neuroergonomics techniques as well as analysis approaches to investigate brain dynamics in working environments. The selection of papers provides insights into new neuroergonomic research approaches that demonstrate significant advances in brain imaging technologies that become more and more mobile, Moreover, a strong trend for new analyses approaches and paradigms investigating real work settings can be seen. Together, this unique collection of latest research papers provides a comprehensive overview on the latest developments in neuroergonomics.

Mind over brain, brain over mind: cognitive causes and consequences of controlling brain activity

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194889 Year: Pages: 134 DOI: 10.3389/978-2-88919-488-9 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

This Research Topic combines articles aiming to gain a better understanding on different factors that determine whether people are successful or not in controlling computerized devices with brain signals. Since decades, technological advancements in neuroscience allow the interpretation of brain signals and their translation into control messages (Brain-computer interface (BCI)). Moreover, the control of brain signals can be used to induce changes in cognition and behavior (Neurofeedback (NF)). However, the break-through of this technology for the broad population in real-world applications has not yet arrived. Various factors have been related to the individual success in controlling computerized devices with brain signals, but to date, no general theoretical framework is available. In this Research Topic, aspects of the training protocol such as instructions, task and feedback as well as cognitive and psychological traits such as motivation, mood, locus of control and empathy are investigated as determinants of BCI or NF performance. Moreover, the mechanisms and networks involved in gaining and maintaining control over brain activity as well as its prediction are addressed. Finally, as the ultimate goal of this research is to use BCI and NF for communication or control and therapy, respectively, novel applications for individuals with disabilities or disorders are discussed.

Listing 1 - 7 of 7
Sort by
Narrow your search

Publisher

Frontiers Media SA (5)

IntechOpen (1)

Springer (1)


License

CC by (6)

unknown (1)


Language

english (7)


Year
From To Submit

2018 (1)

2017 (2)

2016 (1)

2015 (3)