Search results: Found 8

Listing 1 - 8 of 8
Sort by
Closing the Loop Around Neural Systems

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193561 Year: Pages: 423 DOI: 10.3389/978-2-88919-356-1 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Closed-loop neurophysiology has been accelerated by recent software and hardware developments and by the emergence of novel tools to control neuronal activity with spatial and temporal precision, in which stimuli are delivered in real time based on recordings or behavior. Real-time stimulation feedback enables a wide range of innovative studies of information processing and plasticity in neuronal networks. This Research Topic e-Book comprises 16 Original Research Articles, seven Methods Articles, and seven Reviews, Mini- Reviews, and Perspectives, all peer-reviewed and published in Frontiers in Neural Circuits. The contributions deal with closed loop neurophysiology experiments at a variety of levels of neural circuit complexity. Some include modeling and theoretical analyses. New enabling technologies and techniques are described. Novel work is presented from experiments in vitro, in vivo, and in humans, along with their clinical and technological implications for improving the human condition.

Keywords

Feedback --- Real-time --- BCI --- microelectrode array --- CMOS --- DBS --- stimulation

Silicon-Organic Hybrid Platform for Photonic Integrated Circuits

Author:
Book Series: Karlsruhe Series in Photonics and Communications / Karlsruhe Institute of Technology, Institute of Photonics and Quantum Electronics (IPQ) ISSN: 18651100 ISBN: 9783731504306 Year: Volume: 15 Pages: XVIII, 177 S, DOI: 10.5445/KSP/1000048792 Language: ENGLISH
Publisher: KIT Scientific Publishing
Subject: Technology (General)
Added to DOAB on : 2019-07-30 20:02:02
License:

Loading...
Export citation

Choose an application

Abstract

We study the potential of the silicon-organic hybrid (SOH) platform for integrated optics. The unique properties of selected organic materials are added to silicon devices made with CMOS-based processes. We investigate the feasibility of this approach by making prototypes of key components in form of photonic integrated circuits: SOH lasers and SOH modulators are designed, fabricated, post-processed, and characterized. Application scenarios are identified.

Development of CMOS-MEMS/NEMS Devices

Authors: ---
ISBN: 9783039210688 / 9783039210695 Year: Pages: 165 DOI: 10.3390/books978-3-03921-069-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Micro and nano-electro-mechanical system (M/NEMS) devices constitute key technological building blocks to enable increased additional functionalities within Integrated Circuits (ICs) in the More-Than-Moore era, as described in the International Technology Roadmap for Semiconductors. The CMOS ICs and M/NEMS dies can be combined in the same package (SiP), or integrated within a single chip (SoC). In the SoC approach the M/NEMS devices are monolithically integrated together with CMOS circuitry allowing the development of compact and low-cost CMOS-M/NEMS devices for multiple applications (physical sensors, chemical sensors, biosensors, actuators, energy actuators, filters, mechanical relays, and others). On-chip CMOS electronics integration can overcome limitations related to the extremely low-level signals in sub-micrometer and nanometer scale electromechanical transducers enabling novel breakthrough applications. This Special Issue aims to gather high quality research contributions dealing with MEMS and NEMS devices monolithically integrated with CMOS, independently of the final application and fabrication approach adopted (MEMS-first, interleaved MEMS, MEMS-last or others).]

Radiation Tolerant Electronics

Author:
ISBN: 9783039212798 / 9783039212804 Year: Pages: 210 DOI: 10.3390/books978-3-03921-280-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Keywords

physical unclonable function --- FPGA --- total ionizing dose --- Co-60 gamma radiation --- ring-oscillator --- Image processing --- line buffer --- SRAM-based FPGA --- single event upset (SEU) --- configuration memory --- soft error --- radiation-hardened --- instrumentation amplifier --- sensor readout IC --- total ionizing dose --- nuclear fusion --- radiation hardening --- hardening by design --- TMR --- selective hardening --- VHDL --- FPGA --- radiation hardening --- single event upsets --- heavy ions --- error rates --- single-event upsets (SEUs) --- digital integrated circuits --- triple modular redundancy (TMR) --- radiation hardening by design --- TMR --- FMR --- 4MR --- triplex–duplex --- FPGA-based digital controller --- radiation tolerant --- single event effects --- proton irradiation --- RFIC --- SEE testing --- space application --- CMOS --- TDC --- radiation effects --- total ionizing dose (TID) --- single-shot --- PLL --- ring oscillator --- analog single-event transient (ASET) --- bandgap voltage reference (BGR) --- CMOS analog integrated circuits --- gamma-rays --- heavy-ions --- ionization --- protons --- radiation hardening by design (RHBD) --- reference circuits --- single-event effects (SEE) --- space electronics --- total ionization dose (TID) --- voltage reference --- X-rays --- radiation-hardened --- single event gate rupture (SEGR) --- SEB --- power MOSFETs --- Single-Event Upsets (SEUs) --- radiation effects --- Ring Oscillators --- Impulse Sensitive Function --- Radiation Hardening by Design --- fault tolerance --- single event upset --- proton irradiation effects --- neutron irradiation effects --- soft errors --- saturation effect --- gain degradation --- total ionizing dose --- gamma ray --- bipolar transistor --- single event transient (SET) --- single event opset (SEU) --- radiation-hardening-by-design (RHBD) --- frequency synthesizers --- voltage controlled oscillator (VCO) --- frequency divider by two --- CMOS --- n/a

Miniaturized Transistors

Authors: ---
ISBN: 9783039210107 / 9783039210114 Year: Pages: 202 DOI: 10.3390/books978-3-03921-011-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.

Keywords

flux calculation --- etching simulation --- process simulation --- topography simulation --- CMOS --- field-effect transistor --- ferroelectrics --- MOS devices --- negative-capacitance --- piezoelectrics --- power consumption --- thin-film transistors (TFTs) --- compact model --- surface potential --- technology computer-aided design (TCAD) --- metal oxide semiconductor field effect transistor (MOSFET) --- topography simulation --- metal gate stack --- level set --- high-k --- fin field effect transistor (FinFET) --- line edge roughness --- metal gate granularity --- nanowire --- non-equilibrium Green’s function --- random discrete dopants --- SiGe --- variability --- band-to-band tunneling (BTBT) --- electrostatic discharge (ESD) --- tunnel field-effect transistor (TFET) --- Silicon-Germanium source/drain (SiGe S/D) --- technology computer aided design (TCAD) --- bulk NMOS devices --- radiation hardened by design (RHBD) --- total ionizing dose (TID) --- Sentaurus TCAD --- layout --- two-dimensional material --- field effect transistor --- indium selenide --- phonon scattering --- mobility --- high-? dielectric --- low-frequency noise --- silicon-on-insulator --- MOSFET --- inversion channel --- buried channel --- subthreshold bias range --- low voltage --- low energy --- theoretical model --- process simulation --- device simulation --- compact models --- process variations --- systematic variations --- statistical variations --- FinFETs --- nanowires --- nanosheets --- semi-floating gate --- synaptic transistor --- neuromorphic system --- spike-timing-dependent plasticity (STDP) --- highly miniaturized transistor structure --- low power consumption --- drain engineered --- tunnel field effect transistor (TFET) --- polarization --- ambipolar --- subthreshold --- ON-state --- doping incorporation --- plasma-aided molecular beam epitaxy (MBE) --- segregation --- silicon nanowire --- n/a

Nanoelectronic Materials, Devices and Modeling

Authors: ---
ISBN: 9783039212255 / 9783039212262 Year: Pages: 242 DOI: 10.3390/books978-3-03921-226-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Keywords

UAV --- vision localization --- hierarchical --- landing --- information integration --- memristor --- synaptic device --- spike-timing-dependent plasticity --- neuromorphic computation --- memristive device --- ZnO films --- conditioned reflex --- quantum dot --- sample grating --- cross-gain modulation --- bistability --- distributed Bragg --- semiconductor optical amplifier --- topological insulator --- field-effect transistor --- nanostructure synthesis --- optoelectronic devices --- topological magnetoelectric effect --- drain-induced barrier lowering (DIBL) --- gate-induced drain leakage (GIDL) --- silicon on insulator (SOI) --- graphene --- supercapacitor --- energy storage --- ionic liquid --- UV irradiation --- luminescent centres --- bismuth ions --- two-photon process --- oscillatory neural networks --- pattern recognition --- higher order synchronization --- thermal coupling --- vanadium dioxide --- band-to-band tunneling --- L-shaped tunnel field-effect-transistor --- double-gate tunnel field-effect-transistor --- corner-effect --- AlGaN/GaN --- high-electron mobility transistor (HEMTs) --- p-GaN --- enhancement-mode --- 2DEG density --- InAlN/GaN heterostructure --- polarization effect --- quantum mechanical --- gallium nitride --- MISHEMT --- dielectric layer --- interface traps --- current collapse --- PECVD --- gate-induced drain leakage (GIDL) --- drain-induced barrier lowering (DIBL) --- recessed channel array transistor (RCAT) --- on-current (Ion) --- off-current (Ioff) --- subthreshold slope (SS) --- threshold voltage (VTH) --- saddle FinFET (S-FinFET) --- potential drop width (PDW) --- shallow trench isolation (STI) --- source/drain (S/D) --- conductivity --- 2D material --- Green’s function --- reflection transmision method --- variational form --- dual-switching transistor --- third harmonic tuning --- low voltage --- high efficiency --- CMOS power amplifier IC --- insulator–metal transition (IMT) --- charge injection --- Mott transition --- conductive atomic force microscopy (cAFM) --- gate field effect --- atomic layer deposition (ALD) --- zinc oxide --- silicon --- ZnO/Si --- electron affinity --- bandgap tuning --- conduction band offset --- heterojunction --- solar cells --- PC1D --- vertical field-effect transistor (VFET) --- back current blocking layer (BCBL) --- gallium nitride (GaN) --- normally off power devices --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783038979746 / 9783038979753 Year: Volume: 1 Pages: 476 DOI: 10.3390/books978-3-03897-975-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Applications of Power Electronics

Authors: --- ---
ISBN: 9783039210206 / 9783039210213 Year: Volume: 2 Pages: 500 DOI: 10.3390/books978-3-03921-021-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

energy storage --- lithium-ion battery --- battery management system BMS --- battery modeling --- state of charge SoC --- grid-connected inverter --- power electronics --- multi-objective optimization --- switching frequency --- total demand distortion --- switching losses --- EMI filter --- power converter --- power density --- optimal design --- electrical drives --- axial flux machines --- magnetic equivalent circuit --- torque ripple --- back EMF --- permanent-magnet machines --- five-phase permanent magnet synchronous machine --- five-leg voltage source inverter --- multiphase space vector modulation --- sliding mode control --- extended Kalman filter --- voltage source inverters (VSI) --- voltage control --- current control --- digital control --- predictive controllers --- advanced controllers --- stability --- response time --- lithium-ion batteries --- electric vehicles --- battery management system --- electric power --- dynamic PV model --- grid-connected VSI --- HF-link MPPT converter --- nanocrystalline core --- SiC PV Supply --- DC–DC converters --- multi-level control --- renewable energy resources control --- electrical engineering communications --- microgrid control --- distributed control --- power system operation and control --- variable speed pumped storage system --- droop control --- vector control --- phasor model technique --- nine switch converter --- synchronous generator --- digital signal controller --- static compensator, distribution generation --- hybrid converter --- multi-level converter (MLC) --- series active filter --- power factor correction (PFC) --- field-programmable gate array --- particle swarm optimization --- selective harmonic elimination method --- voltage source converter --- plug-in hybrid electric vehicles --- power management system --- renewable energy sources --- fuzzy --- smart micro-grid --- five-phase machine --- fault-tolerant control --- induction motor --- one phase open circuit fault (1-Ph) --- adjacent two-phase open circuit fault (A2-Ph) --- volt-per-hertz control (scalar control) --- current-fed inverter --- LCL-S topology --- semi-active bridge --- soft switching --- voltage boost --- wireless power transfer --- DC–DC conversion --- zero-voltage switching (ZVS) --- transient control --- DC–DC conversion --- bidirectional converter --- power factor correction --- line frequency instability --- one cycle control --- non-linear phenomena --- bifurcation --- boost converter --- converter --- ice melting --- modular multilevel converter (MMC) --- optimization design --- transmission line --- static var generator (SVG) --- hardware-in-the-loop --- floating-point --- fixed-point --- real-time emulation --- field programmable gate array --- slim DC-link drive --- VPI active damping control --- total harmonic distortion --- cogging torque --- real-time simulation --- power converters --- nonlinear control --- embedded systems --- high level programing --- SHIL --- DHIL --- 4T analog MOS control --- high frequency switching power supply --- water purification --- modulation index --- electromagnetic interference --- chaotic PWM --- DC-DC buck converter --- CMOS chaotic circuit --- triangular ramp generator --- spread-spectrum technique --- system in package --- electric vehicle --- wireless power transfer --- inductive coupling --- coupling factor --- phase-shift control --- series-series compensation --- PSpice --- fixed-frequency double integral sliding-mode (FFDISM) --- class-D amplifier --- Q-factor --- GaN cascode --- direct torque control (DTC) --- composite active vectors modulation (CVM) --- permanent magnet synchronous motor (PMSM) --- effect factors --- double layer capacitor (DLC) models --- energy storage modelling --- simulation models --- current control loops --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- space vector pulse width modulation (SVPWM) --- vector control --- voltage source inverter --- active rectifiers --- single-switch --- analog phase control --- digital phase control --- wireless power transfer --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- conducting angle determination (CAD) techniques --- total harmonic distortion (THD) --- three-phase bridgeless rectifier --- fault diagnosis --- fault tolerant control --- hardware in loop --- compensation topology --- electromagnetic field (EMF) --- electromagnetic field interference (EMI) --- misalignment --- resonator structure --- wireless power transfer (WPT) --- WPT standards --- EMI filter --- electromagnetic compatibility --- AC–DC power converters --- electromagnetic interference filter --- matrix converters --- current source --- power density --- battery energy storage systems --- battery chargers --- active receivers --- frequency locking --- reference phase calibration --- synchronization --- wireless power transfer --- lithium-ion batteries --- SOC estimator --- parameter identification --- particle swarm optimization --- improved extended Kalman filter --- battery management system --- PMSG --- DC-link voltage control --- variable control gain --- disturbance observer --- lithium-ion power battery pack --- composite equalizer --- active equalization --- passive equalization --- control strategy and algorithm --- n/a --- common-mode inductor --- high-frequency modeling --- electromagnetic interference --- filter --- fault diagnosis --- condition monitoring --- induction machines --- support vector machines --- expert systems --- neural networks --- DC-AC power converters --- frequency-domain analysis --- impedance-based model --- Nyquist stability analysis --- small signal stability analysis --- harmonic linearization --- line start --- permanent magnet --- synchronous motor --- efficiency motor --- rotor design --- harmonics --- hybrid power filter --- active power filter --- power quality --- total harmonic distortion --- equivalent inductance --- leakage inductance --- switching frequency modelling --- induction motor --- current switching ripple --- multilevel inverter --- cascaded topology --- voltage doubling --- switched capacitor --- nearest level modulation (NLM) --- total harmonic distortion (THD) --- dead-time compensation --- power converters --- harmonics --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search
-->