Search results:
Found 4
Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Neurodegenerative diseases (NDs) are a heterogeneous group of disorders affecting the central nervous system. Despite significant differences in their causes, neuropathological abnormalities, and clinical outcomes, some similarities can be found among them, as for example: 1) frequent aggregation and deposition of misfolded proteins, 2) common molecular mechanisms leading to neurodegeneration, and 3) certain overlap in symptoms and clinical features. To date, there is no cure that could stop or delay the progression of these diseases. The advent of advanced gene therapy techniques such as gene silencing and gene editing opened a new avenue for the development of therapeutic strategies for NDs.The discovery of the RNA interference (RNAi) mechanism, in 1998, by Andrew Fire and Craig Mello allowed an important boost to the gene therapy field, providing a potential therapeutic strategy to treat inherited dominant genetic disorders. The use of small RNA sequences to control the expression of disease-causing genes rapidly implemented in the preclinical studies for different diseases. In the field of NDs, several successful studies using this technology proved its potential as a therapeutic option. However, issues like the type of delivery system (non-viral versus viral) or the potential toxicity of the small RNA molecules, made the translation of gene silencing therapeutics to human application very slow and difficult.Recently, a new hope in the gene therapy field emerged with the development of gene editing techniques like TALENs or CRISPR/Cas9 systems. The opportunity of editing or deleting gene sequences drove the scientific community euphoric, with an enormous increase in the number of published studies using this type of techniques. Recently, the first clinical trial using one of these systems was approved in China. For NDs, gene-editing technology also represents an important therapeutic option, and the first preclinical studies are now being published, showing the potential accomplishment for this technology.
Gene silencing --- Gene editing --- Neurodegenerative diseases --- Antisense oligonucleotides --- CRISPR/Cas9 --- Neuroinflammation --- iPS cells --- Long non-coding RNAs --- RNA interference --- Neurodegeneration
Choose an application
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.
phloem metabolites --- electrospray ionisation --- mass spectrometry --- cultivar --- quality groups --- nitrogen --- faba bean --- zt-1 --- linkage map --- SSR --- ISSR --- Brassica napus --- GmDof4 --- GmDof11 --- oleic acid --- fatty acid composition --- differentially expressed genes --- drought --- RNA-seq --- RNA editing --- wheat --- climate change --- mapping populations --- genetic resources --- mutation breeding --- genome editing --- new plant breeding techniques --- “omics” data --- bioinformatics --- rice --- CRISPR/Cas9 --- Wx --- TGW6 --- mutations --- maintainer --- cytoplasmic male sterile --- amylose content --- anther --- protein --- cytoplasmic male sterility --- fertility restoration --- sunflower --- Rf1 gene --- GWAS --- Pentatricopeptide Repeats --- PPR genes --- association mapping --- candidate genes --- gene mapping --- lodicule --- non-open hull 1(noh1) --- rice --- crops --- quantitative genetics --- estimated breeding value --- genomic prediction --- plant breeding --- breeding scheme --- pedigree --- genetic value --- wheat --- pre-harvest sprouting --- seed dormancy --- abscisic acid --- gibberellin --- QTL/genes --- brown midrib --- cell wall --- gold hull and internode --- grass family --- lignin --- monolignol pathway --- mutational breeding --- orange lemma --- transgenic cereals --- SNP --- SSR --- next generation sequencing --- genotyping by sequencing --- Japanese plum --- SSR --- diversity --- genetic structure --- candidate genes --- genomic selection --- mutants --- ddRAD sequencing --- genotyping-by-sequencing --- CRISPR/Cas9 site directed mutagenesis --- genome-wide association scan --- genetic modification --- F1 hybrids --- QTL
Choose an application
Transcriptional regulation is a critical biological process involved in the response of a cell, a tissue or an organism to a variety of intra- and extra-cellular signals. Besides, it controls the establishment and maintenance of cell identity throughout developmental and differentiation programs. This highly complex and dynamic process is orchestrated by a huge number of molecules and protein networks and occurs through multiple temporal and functional steps. Of note, many human disorders are characterized by misregulation of global transcription since most of the signaling pathways ultimately target components of transcription machinery. This book includes a selection of papers that illustrate recent advances in our understanding of transcriptional regulation and focuses on many important topics, from cis-regulatory elements to transcription factors, chromatin regulators and non-coding RNAs, other than several transcriptome studies and computational analyses.
major depressive disorder --- glioblastoma --- differentially expressed genes --- transcriptomics --- common pathway --- mouse --- miR-25-3p --- Akt1 --- AP-2? --- promoter --- cell metabolism --- p57Kip2 --- CDKN1C --- epigenetics --- disease --- cell differentiation --- placenta --- long non-coding RNA (lncRNA) --- human --- pregnancy --- high-throughput RNA sequencing (RNA-Seq) --- transcriptome --- Rsh regulon --- Novosphingobium pentaromativorans US6-1 --- sphingomonads --- RNA-seq --- N-acyl-l-homoserine lactone --- ppGpp --- selenium --- selenocysteine --- selenoproteins --- selenocysteine insertion sequence --- nonsense-mediated decay --- G-quadruplex --- transcriptional regulation --- promoter --- CRISPR/Cas9 --- PRDM gene family --- TCGA data analysis --- somatic mutations --- transcriptome profiling --- human malignancies --- tristetraprolin (TTP) --- tumorigenesis --- posttranscriptional regulation --- adenosine and uridine-rich elements (AREs) --- circRNA-disease associations --- pathway --- heterogeneous network --- Patau Syndrome --- cytogenetics --- FOXO1 --- transcription factor --- molecular pathways --- bioinformatics --- molecular docking --- and drug design --- transcription regulation --- gene expression --- causal inference --- enhancer activity --- insect --- transcription factors --- structures and functions --- research methods --- progress and prospects --- Pax3 --- Pteria penguin (Röding, 1798) --- tyrosinase --- melanin --- RNA interference --- liquid chromatograph-tandem mass spectrometer (LC-MS/MS) --- epigenetics --- gene expression --- nutrition --- transcription --- disorders --- mechanisms --- Crassostrea gigas --- Pacific oyster --- pediveliger larvae --- bioadhesive --- transcriptome --- gene expression --- interactome --- microscopy --- fertilization --- self-incompatibility --- transcriptome --- tea --- long non-coding RNAs --- cancer --- acute leukemia --- therapeutic targets --- Adiponectin --- cancer --- Adiponectin receptors --- obesity --- inflammatory response --- inflammation --- nutritional status --- n/a
Choose an application
The endometrium has been the subject of intense research in a variety of clinical settings, because of its importance in the reproductive process and its role in women’s health. In the past 15 years, significant efforts have been invested in defining the molecular phenotype of the receptive phase endometrium as well as of various endometrial pathologies. Although this has generated a wealth of information on the molecular landscape of human endometrium, there is a need to complement this information in light of the novel methodologies and innovative technical approaches. The focus of this International Journal of Molecular Sciences Special Issue is on molecular and cellular mechanisms of endometrium and endometrium-related disorders. The progress made in the molecular actions of steroids, in the metabolism of steroids and intracrinology, in endometrial intracellular pathways, in stem cells biology, as well as in the molecular alterations underlying endometrium-related pathologies has been the focus of the reviews and papers included.
RANK --- endometrium --- endometrial cancer --- prognosis --- immunohistochemistry --- gene expression --- endometriosis --- developmental pathway --- pathogenomics --- mesenchymal stem cells --- endometrial cancer --- mtDNA mutations --- deficit of complex I --- antioxidant response --- mitochondrial biogenesis --- mitochondrial dynamics --- mitophagy --- miRNA --- lncRNAs --- endometrial cancer --- endometriosis --- chronic endometritis --- cell contacts --- tight junction --- adherens junction --- gap junction --- endometrium --- implantation --- decidualization --- endometriosis --- endometrial cancer --- liquid biopsy --- uterine aspirate --- circulating tumour cells (CTCs) --- circulating tumour DNA (ctDNA) --- exosomes --- Vitamin D --- endometrium --- endometrial cancer --- endometrial cancer --- preclinical models --- translational research --- endometrial cancer --- type II endometrial carcinoma --- targeted therapy --- kinase inhibitor --- molecular marker --- protein kinase --- protein phosphatase --- PP2A --- PPP2R1A --- SMAP --- endometriosis --- infertility --- niche --- inflammation --- immunomodulation --- mesenchymal stem cell --- orthoxenograft --- uterine cancer --- avatar --- murine models --- personalized medicine --- targeted therapy --- preclinical studies --- translational research --- endometriosis --- TRP channels --- endometrial stromal cells --- eutopic and ectopic endometrium --- endometrial cell --- pathway --- proliferation --- decidualization --- migration --- angiogenesis --- regeneration --- breakdown --- implantation --- endometrial cancer --- orthotopic xenograft model --- estrogen dependent --- bioluminescence imaging --- contrast-enhanced CT scan --- endometrium --- adult stem cells --- endometrial regeneration --- stem cell markers --- endometriosis --- endometrial cancer --- decidualisation --- oestradiol --- aromatase --- testosterone --- dehydroepiandrosterone (DHEA) --- endometriosis --- endometrial cancer --- sulfatase --- endometriosis --- ectopic stroma --- microRNA --- small RNA sequencing --- EDN1 --- HOXA10 --- miR-139-5p --- miR-375 --- CTCF --- tumour suppressor gene --- haploinsufficiency --- zinc finger --- CRISPR/Cas9 --- cancer --- endometrial cancer --- gene editing --- phosphoinositide 3-kinase --- PIK3CA --- PIK3CB --- p110? --- p110? --- endometrial cancer --- LGR5 --- endometrium --- endometriosis --- menstrual cycle --- macrophages
Listing 1 - 4 of 4 |
Sort by
|