Search results: Found 19

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Morphologically complex words in the mind/brain

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198030 Year: Pages: 230 DOI: 10.3389/978-2-88919-803-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The question of how morphologically complex words (assign-ment, listen-ed) are represented and processed in the brain has been one of the most hotly debated topics in the cognitive neuroscience of language. Do complex words engage cortical representations and processes equivalent to single lexical objects or are they processed as sequences of separate morpheme-like units? Research on morphological processing has suggested that adults make efficient use of both lexical (i.e., whole word) storage and retrieval, as well as combinatorial computation in processing morphologically complex words. Psycholinguistic studies have demonstrated that processing of complex words can be affected both by properties of the morphemes and the whole words, such as their frequency, transparency, and regularity. Furthermore, this research has been informative about the time-course of complex word recognition and production, and the role of morphological structure in these processes. At the neural level, left-hemisphere inferior frontal and superior temporal areas, and negative-going event-related potentials, have been consistently associated with morphological processing. While most previous research has been done on the recognition of morphologically complex words in adult native speakers, much less is known about neurocognitive processes involved in the on-line production of morphologically complex words, and even less on morphological processing in children and non-native speakers. Moreover, we have limited understanding of how linguistically distinct morphological processes, e.g. inflectional (listen-ed) versus derivational (assign-ment), are handled by the cortical language networks. This e-book gives an up-to-date overview of the questions currently addressed in the field of morphological processing. It highlights the significance of morphological information in language processing, both written and spoken, as assessed by a variety of methods and approaches. It also points to a number of unresolved issues, and provides future directions for research in this key area of cognitive neuroscience of language.

Keywords

morphology --- derivation --- inflection --- Compound --- L2 --- Dyslexia --- ERP --- MEG --- semantics --- decomposition

At the doors of lexical access: The importance of the first 250 milliseconds in reading

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192601 Year: Pages: 112 DOI: 10.3389/978-2-88919-260-1 Language: English
Publisher: Frontiers Media SA
Subject: Psychology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

Correct word identification and processing is a prerequisite for accurate reading, and decades of psycholinguistic and neuroscientific research have shown that the magical moments of visual word recognition are short-lived and markedly fast. The time window in which a given letter string passes from being a mere sequence of printed curves and strokes to acquiring the word status takes around one third of a second. In a few hundred milliseconds, a skilled reader recognizes an isolated word and carries out a number of underlying processes, such as the encoding of letter position and letter identity, and lexico-semantic information retrieval. However, the precise manner (and order) in which these processes occur (or co-occur) is a matter of contention subject to empirical research. There's no agreement regarding the precise timing of some of the essential processes that guide visual word processing, such as precise letter identification, letter position assignment or sub-word unit processing (bigrams, trigrams, syllables, morphemes), among others. Which is the sequence of processes that lead to lexical access? How do these and other processes interact with each other during the early moments of word processing? Do these processes occur in a serial fashion or do they take place in parallel? Are these processes subject to mutual interaction principles? Is feedback allowed for within the earliest stages of word identification? And ultimately, when does the reader's brain effectively identify a given word? A vast number of questions remain open, and this Research Topic will cover some of them, giving the readership the opportunity to understand how the scientific community faces the problem of modeling the early stages of word identification according to the latest neuroscientific findings.

New Advances in Electrocochleography for Clinical and Basic Investigation

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455041 Year: Pages: 315 DOI: 10.3389/978-2-88945-504-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Electrocochleography (ECochG) is an approach for objective measurements of physiologic responses from the inner ear. Measurements have classically been made from electrodes placed in the outer ear canal, on the tympanic membrane, the round window niche, or inside the cochlea. Recent innovations have led to ECochG being used for exciting new purposes that drive clinical practice and contribute to the basic understanding of inner ear physiology. Cochlear implant recording electrodes can monitor the preservation of residual, low-frequency acoustic hearing, both in the operating room and post-operatively. ECochG measurements can quantify differential effects of inner ear surgery or other manipulations on vestibular and auditory physiology simultaneously. Various attributes of cognitive neuroscience can be addressed with ECochG measurements from the auditory periphery. These advances in ECochG provide a way to understand a variety of inner ear diseases and are likely to be of value to many groups in their own clinical and basic research.

Discontinuous Fiber Composites

Author:
ISBN: 9783038974918 / 9783038974925 Year: Pages: 210 DOI: 10.3390/books978-3-03897-492-5 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Chemistry (General) --- General and Civil Engineering --- Materials
Added to DOAB on : 2019-01-15 12:25:03
License:

Loading...
Export citation

Choose an application

Abstract

Discontinuous fiber-reinforced polymers have gained importance in the transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes.Typical processes involving discontinuous fiber reinforced thermoplastic composite materials include injection and compression molding processes as well as extrusion. Furthermore, the automotive and appliance industries also use thermosets reinforced with chopped fibers in the form of sheet molding compound and bulk molding compound, for compression and injection-compression molding processes, respectively.A big disadvantage of discontinuous fiber composites is that the configuration of the reinforcing fibers is significantly changed throughout production process, reflected in the form of fiber attrition, excessive fiber orientation, fiber jamming and fiber matrix separation. This process-induced variation of the microstructural fiber properties within the molded part introduces heterogeneity and anisotropies to the mechanical properties, which can limit the potential of discontinuous fiber reinforced composites for lightweight applications.The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber reinforced composites and the effect processing has on fiber orientation, fiber length and fiber density distributions throughout the final part. Papers presenting investigations on the effect fiber configurations have on the mechanical properties of the final composite products and materials are welcome in the Special Issue. Researchers who are modeling and simulating processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites are welcomed to submit papers. Authors are encouraged to present new models, constitutive laws and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and facilitate their use in different engineering applications.

Microlenses

ISBN: 9783038420507 9783038420507 Year: Pages: 160 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2015-10-22 08:40:45
License:

Loading...
Export citation

Choose an application

Abstract

The study and application of microscale lenses and lens arrays enjoys a long history. Advances in microfabrication technologies in the past few decades have enabled the design and fabrication of microlenses and microlens arrays through many different approaches. In recent years, there has been notably a host of exciting developments in the microlenses and microlens arrays, including tunable-focus ones, those fabricated on non-planar substrates and surfaces, and microlens arrays mimicking natural compound eyes, to name just a few. The developments in microlenses and microlens arrays have found profound applications in many engineering and biomedical fields, including but not limited to optical coherence tomography (OCT), endoscopy, photolithography, 3-dimensional imaging, optical communications, and lab on chips. This Special Issue aims to highlight the state of the art in the development of microlenses and microlens arrays; examples being fabrication technologies and optical characterizations. It also focuses on their applications when implemented in microoptical systems.

Recent Advances in Novel Materials for Future Spintronics

Authors: --- ---
ISBN: 9783038979760 / 9783038979777 Year: Pages: 152 DOI: 10.3390/books978-3-03897-977-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

As we all know, electrons carry both charge and spin. The processing of information in conventional electronic devices is based only on the charge of electrons. Spin electronics, or spintronics, uses the spin of electrons, as well as their charge, to process information. Metals, semiconductors, and insulators are the basic materials that constitute the components of electronic devices, and these types of materials have been transforming all aspects of society for over a century. In contrast, magnetic metals, half-metals (including zero-gap half-metals), magnetic semiconductors (including spin-gapless semiconductors), dilute magnetic semiconductors, and magnetic insulators are the materials that will form the basis for spintronic devices. This book aims to collect a range of papers on novel materials that have intriguing physical properties and numerous potential practical applications in spintronics.

Smart Nanovesicles for Drug Targeting and Delivery

Authors: ---
ISBN: 9783038978947 / 9783038978954 Year: Pages: 198 DOI: 10.3390/books978-3-03897-895-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Nanovesicles are highly-promising systems for the delivery and/or targeting of drugs, biomolecules and contrast agents. Despite the fact that initial studies in this area were performed on phospholipid vesicles, there is an ever-increasing interest in the use of other molecules to obtain smart vesicular carriers focusing on strategies for targeted delivery. These systems can be obtained using newly synthesized smart molecules, or by intelligent design of opportune carriers to achieve specific delivery to the site of action.

Marine Natural Products and Obesity

Authors: ---
ISBN: 9783039211913 / 9783039211920 Year: Pages: 194 DOI: 10.3390/books978-3-03921-192-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Obesity and related co-morbidities are increasing worldwide and pose a serious health problem. Changes in lifestyle and diet would be the best remedies to fight obesity; however, many people will still rely on medical aid. Marine organisms have been prolific in the production of bioactive compounds for many diseases, e.g., cancer, and promise to be an excellent source for natural-derived molecules and novel nutraceuticals. Bioactive compounds with beneficial activities towards obesity have been described from diverse marine organism including marine algae, bacteria, sponges, fungi, crustaceans or fish. This Special Issue will highlight the progress in the following topics: Bioactive compounds for the treatment of obesity and obesity-related co-morbidities (diabetes, fatty liver, hyperlipidemia) from marine organisms; the isolation of novel compounds, the bioactivity screening of marine organisms and the elucidation of molecular mode of action of marine bioactive compounds.

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Advances in Chitin/Chitosan Characterization and Applications

Authors: ---
ISBN: 9783038978022 9783038978039 Year: Pages: 414 DOI: 10.3390/books978-3-03897-803-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Biochemistry
Added to DOAB on : 2019-04-25 16:37:17
License:

Loading...
Export citation

Choose an application

Abstract

Functional advanced biopolymers have received far less attention than renewable biomass (cellulose, rubber, etc.) used for energy production. Among the most advanced biopolymers known is chitosan. The term chitosan refers to a family of polysaccharides obtained by partial de-N-acetylation from chitin, one of the most abundant renewable resources in the biosphere. Chitosan has been firmly established as having unique material properties as well as biological activities. Either in its native form or as a chemical derivative, chitosan is amenable to being processed&mdash;typically under mild conditions&mdash;into soft materials such as hydrogels, colloidal nanoparticles, or nanofibers. Given its multiple biological properties, including biodegradability, antimicrobial effects, gene transfectability, and metal adsorption&mdash;to name but a few&mdash;chitosan is regarded as a widely versatile building block in various sectors (e.g., agriculture, food, cosmetics, pharmacy) and for various applications (medical devices, metal adsorption, catalysis, etc.). This Special Issue presents an updated account addressing some of the major applications, including also chemical and enzymatic modifications of oligos and polymers. A better understanding of the properties that underpin the use of chitin and chitosan in different fields is key for boosting their more extensive industrial utilization, as well as to aid regulatory agencies in establishing specifications, guidelines, and standards for the different types of products and applications.

Keywords

aerogels --- chitosan --- ionic liquids --- ionogels --- zinc–chitosan complexes --- characterization --- bio-sorbent --- phosphate --- adsorption --- mechanism --- thermodynamic --- chitosan --- hydrogel --- phase transition --- gelation mechanism --- chitosan --- defense responses --- fruits --- nanoparticles --- plant growth --- pesticides --- Boron --- chitosan --- iron(III) hydroxide --- neodymium --- sorption --- chitin --- chitosan --- chitosan derivative --- chitin derivative --- oral care --- skin care --- hear care --- marine resources --- over-the counter-drug --- polymer carrier --- chitin --- chitosan --- nanostructured biomaterial --- polymer --- self-masking nanosphere lithography --- cicada --- chitosan --- self-assembled --- polyelectrolyte complex --- nanoparticle --- drug delivery --- Citrobacter --- biosynthesis --- bioflocculant --- chitosan --- metabolic pathway --- PEO/chitosan blend --- swelling --- mechanical properties --- wet and dried states --- chitosan --- biological activity --- medical applications --- chitosan --- PCL --- strontium --- scaffolds --- craniofacial engineering --- chitin --- chitosan --- derivatization --- controlled functionalization --- click chemistry --- graft copolymer --- cyclodextrin --- dendrimer --- ionic liquids --- chitin deacetylases --- chitosan --- chitooligosaccharides --- carbohydrate esterases --- structure --- substrate specificity --- deacetylation pattern --- binary --- chitosan --- desorption --- iron --- lead --- mercury --- salt effects --- single --- sorption competition --- chitosan supported copper --- heterogeneous catalyst --- organosilicon compound --- easily recyclable --- chitosan --- papermaking --- wet-end --- coating --- wastewater --- ionic cross-linking --- eco-friendly formulations --- thermal transition sol-gel --- drug delivery systems --- MTDSC --- DSC --- gene delivery --- non-viral vectors --- chitosan structure --- pDNA --- siRNA --- TEOS --- methylene blue --- chitosan --- modelling --- cross-linking --- interpenetrating --- XRD --- FTIR

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (16)

Frontiers Media SA (3)


License

CC by-nc-nd (15)

CC by (4)


Language

eng (14)

english (5)


Year
From To Submit

2019 (15)

2018 (1)

2016 (1)

2015 (1)

2014 (1)