Search results: Found 3

Listing 1 - 3 of 3
Sort by
Metal-Organic Frameworks

Authors: ---
ISBN: 9789535126621 9789535126638 Year: Pages: 166 DOI: 10.5772/61907 Language: English
Publisher: IntechOpen
Subject: Inorganic Chemistry
Added to DOAB on : 2019-10-03 07:51:49

Loading...
Export citation

Choose an application

Abstract

The emerging and interesting field of MOF encouraged us to bring forth the book titled ''Metal Organic Frameworks''. The book is divided into three sections. Section A consists of introduction, Section B comprises the synthesis and characterization techniques, and Section C is dedicated to the applications of MOFs. The book would be useful for scientists and researchers interested in the field of MOFs.

The Chemistry of Imaging Probes

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455980 Year: Pages: 129 DOI: 10.3389/978-2-88945-598-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-01-23 14:53:43
License:

Loading...
Export citation

Choose an application

Abstract

Over the past decades, the field of molecular imaging has been rapidly growing involving multiple disciplines such as medicine, biology, chemistry, pharmacology and biomedical engineering. Any molecular imaging procedure requires an imaging probe that is an agent used to visualize, characterize and quantify biological processes in living systems. Such a probe typically consists of an agent that usually produces signal for imaging purpose, a targeting moiety, and a linker connecting the targeting moiety and the signaling agent.Many challenging problems of molecular imaging can be addressed by exploiting the great possibilities offered by modern synthetic organic and coordination chemistry and the powerful procedures provided by conjugation chemistry. Thus, chemistry plays a decisive role in the development of this cutting-edge methodology.Currently, the diagnostic imaging modalities include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound (US), Nuclear Imaging (PET, SPECT), Optical Imaging (OI) and Photoacoustic Imaging (PAI). Each of these imaging modalities has its own advantages and disadvantages, and therefore, a multimodal approach combining two techniques is often adopted to generate complementary anatomical and functional information of the disease. The basis for designing imaging probes for a given application is dictated by the chosen imaging modality, which in turn is dependent upon the concentration and localization profile (vascular, extracellular matrix, cell membrane, intracellular, near or at the cell nucleus) of the target molecule. The development of high-affinity ligands and their conjugation to the targeting vector is also one of the key steps for pursuing efficient molecular imaging probes. Other excellent reviews, text and monographs describe the principles of biomedical imaging, focusing on molecular biology or on the physics behind the techniques. This Research Topic aims to show how chemistry can offer molecular imaging the opportunity to express all its potential.

Coordination Chemistry of Silicon

Author:
ISBN: 9783038976387 Year: Pages: 225 DOI: 10.3390/books978-3-03897-639-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Inorganic Chemistry
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

The chemistry of silicon has always been a field of major concern due to its proximity to carbon on the periodic table. From the molecular chemist's viewpoint, one of the most interesting differences between carbon and silicon is their divergent coordination behavior. In fact, silicon is prone to form hyper-coordinate organosilicon complexes, and, as conveyed by reports in the literature, highly sophisticated ligand systems are required to furnish low-coordinate organosilicon complexes. Tremendous progress in experimental, as well as computational, techniques has granted synthetic access to a broad range of coordination numbers for silicon, and the scientific endeavor, which was ongoing for decades, was rewarded with landmark discoveries in the field of organosilicon chemistry. Molecular congeners of silicon(0), as well as silicon oxides, were unveiled, and the prominent group 14 metalloid proved its applicability in homogenous catalysis as a supportive ligand or even as a center of catalytic activity. This book focuses on the most recent advances in the coordination chemistry of silicon with transition metals as well as main group elements, including the stabilization of low-valent silicon species through the coordination of electron donor ligands. Therefore, this book is associated with the development of novel synthetic methodologies, structural elucidations, bonding analysis, and also possible applications in catalysis or chemical transformations using related organosilicon compounds.

Keywords

silanetriols --- disiloxane tetrols --- silsesquioxanes --- condensation --- molecular cage --- platinum --- primary silane --- hydrido complex --- oxidative addition --- ligand-exchange reaction --- X-ray crystallography --- Si–Cl activation --- germylene --- digermene --- digermacyclobutadiene --- palladium --- cluster --- cyclic organopolysilane --- template --- bridging silylene ligand --- isocyanide --- hydrogen bonds --- silicon --- 2-silylpyrrolidines --- stereochemistry --- X-ray crystallography --- Baird’s rule --- computational chemistry --- excited state aromaticity --- Photostability --- dye-sensitized solar cell --- disilanylene polymer --- photoreaction --- surface modification --- TiO2 --- silylene --- germylene --- N-heterocyclic carbene --- oxidative addition --- siloxanes --- host-guest chemistry --- supramolecular chemistry --- main group coordination chemistry --- hydrogen bonding --- adsorption --- bond activation --- bonding analysis --- density functional theory --- distorted coordination --- molecular orbital analysis --- silicon surfaces --- disilene --- functionalization --- ?-electron systems --- silicon --- N-heterocyclic carbenes --- bromosilylenes --- silyliumylidenes --- dehydrobromination --- silicon cluster --- siliconoid --- nanoparticle --- computation --- silicon --- N-heterocyclic carbenes --- silyliumylidenes --- small molecule activation --- mechanistic insights --- organosilicon --- reductant --- N-Heterocyclic tetrylene --- salt-free --- germanium --- germanethione --- germathioacid chloride --- N-heterocyclic carbines --- ?-chloro-?-hydrooligosilane --- titanium --- ruthenium --- dehydrogenative alkoxylation --- cluster --- isomerization --- silicon --- siliconoid --- subvalent compounds --- AIM --- DFT --- intermetallic bond --- 29Si NMR spectroscopy --- X-ray diffraction

Listing 1 - 3 of 3
Sort by
Narrow your search