Search results: Found 8

Listing 1 - 8 of 8
Sort by
Role of Protein-Protein Interactions in Metabolism: Genetics, Structure, Function

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453856 Year: Pages: 152 DOI: 10.3389/978-2-88945-385-6 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Therapeutics
Added to DOAB on : 2018-11-16 17:17:57
License:

Loading...
Export citation

Choose an application

Abstract

Genetic variations may change the structure and function of individual proteins as well as affect their interactions with other proteins and thereby impact metabolic processes dependent on protein-protein interactions. For example, cytochrome P450 proteins, which metabolize a vast array of drugs, steroids and other xenobiotics, are dependent on interactions with redox and allosteric partner proteins for their localization, stability, (catalytic) function and metabolic diversity (reactions). Genetic variations may impact such interactions by changing the splicing and/or amino acid sequence which in turn may impact protein topology, localization, post translational modifications and three dimensional structure. More generally, research on single gene defects and their role in disease, as well as recent large scale sequencing studies suggest that a large number of genetic variations may contribute to disease not only by affecting gene function or expression but also by modulating complex protein interaction networks.The aim of this research topic is to bring together researchers working in the area of drug, steroid and xenobiotic metabolism who are studying protein-protein interactions, to describe their recent advances in the field. We are aiming for a comprehensive analysis of the subject from different approaches including genetics, proteomics, transcriptomics, structural biology, biochemistry and pharmacology. Of particular interest are papers dealing with translational research describing the role of novel genetic variations altering protein-protein interaction. Authors may submit original articles, reviews and opinion or hypothesis papers dealing with the role of protein-protein interactions in health and disease.

Role of Protein-Protein Interactions in Metabolism: Genetics, Structure, Function, 2nd Edition

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454914 Year: Pages: 152 DOI: 10.3389/978-2-88945-491-4 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Therapeutics
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Genetic variations may change the structure and function of individual proteins as well as affect their interactions with other proteins and thereby impact metabolic processes dependent on protein-protein interactions. For example, cytochrome P450 proteins, which metabolize a vast array of drugs, steroids and other xenobiotics, are dependent on interactions with redox and allosteric partner proteins for their localization, stability, (catalytic) function and metabolic diversity (reactions). Genetic variations may impact such interactions by changing the splicing and/or amino acid sequence which in turn may impact protein topology, localization, post translational modifications and three dimensional structure. More generally, research on single gene defects and their role in disease, as well as recent large scale sequencing studies suggest that a large number of genetic variations may contribute to disease not only by affecting gene function or expression but also by modulating complex protein interaction networks. The aim of this research topic is to bring together researchers working in the area of drug, steroid and xenobiotic metabolism who are studying protein-protein interactions, to describe their recent advances in the field. We are aiming for a comprehensive analysis of the subject from different approaches including genetics, proteomics, transcriptomics, structural biology, biochemistry and pharmacology. Of particular interest are papers dealing with translational research describing the role of novel genetic variations altering protein-protein interaction. Authors may submit original articles, reviews and opinion or hypothesis papers dealing with the role of protein-protein interactions in health and disease. Potential topics include, but are not limited to: • Role of protein-protein interactions in xenobiotic metabolism by cytochrome P450s and other drug metabolism enzymes.• Role of classical and novel interaction partners for cytochrome P450-dependent metabolism which may include interactions with redox partners, interactions with other P450 enzymes to form P450 dimers/multimers, P450-UGT interactions and proteins involved in posttranslational modification of P450s.• Effect of genetic variations (mutations and polymorphisms) on metabolism affected by protein-protein interactions. • Structural implications of mutations and polymorphisms on protein-protein interactions. • Functional characterization of protein-protein interactions.• Analysis of protein-protein interaction networks in health and disease.• Regulatory mechanisms governing metabolic processes based on protein-protein interactions.• Experimental approaches for identification of new protein-protein interactions including changes caused by mutations and polymorphisms.

Anticancer Drugs

Authors: ---
ISBN: 9783039215867 9783039215874 Year: Pages: 214 DOI: 10.3390/books978-3-03921-587-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General)
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The past decades have seen major developments in the understanding of the cellular and molecular biology of cancer. Significant progress has been achieved regarding long-term survival for the patients of many cancers with the use of tamoxifen for treatment of breast cancer, treatment of chronic myeloid leukaemia with imatinib, and the success of biological drugs. The transition from cytotoxic chemotherapy to targeted cancer drug discovery and development has resulted in an increasing selection of tools available to oncologists. In this Special Issue of Pharmaceuticals, we highlight the opportunities and challenges in the discovery and design of innovative cancer therapies, novel small-molecule cancer drugs and antibody–drug conjugates, with articles covering a variety of anticancer therapies and potential relevant disease states and applications. Significant efforts are being made to develop and improve cancer treatments and to translate basic research findings into clinical use, resulting in improvements in survival rates and quality of life for cancer patients. We demonstrate the possibilities and scope for future research in these areas and also highlight the challenges faced by scientists in the area of anticancer drug development leading to improved targeted treatments and better survival rates for cancer patients.

Advances in Single Molecule, Real-Time (SMRT) Sequencing

Authors: ---
ISBN: 9783039217007 9783039217014 Year: Pages: 128 DOI: 10.3390/books978-3-03921-701-4 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

PacBio’s single-molecule real-time (SMRT) sequencing technology offers important advantages over the short-read DNA sequencing technologies that currently dominate the market. This includes exceptionally long read lengths (20 kb or more), unparalleled consensus accuracy, and the ability to sequence native, non-amplified DNA molecules. From fungi to insects to humans, long reads are now used to create highly accurate reference genomes by de novo assembly of genomic DNA and to obtain a comprehensive view of transcriptomes through the sequencing of full-length cDNAs. Besides reducing biases, sequencing native DNA also permits the direct measurement of DNA base modifications. Therefore, SMRT sequencing has become an attractive technology in many fields, such as agriculture, basic science, and medical research. The boundaries of SMRT sequencing are continuously being pushed by developments in bioinformatics and sample preparation. This book contains a collection of articles showcasing the latest developments and the breadth of applications enabled by SMRT sequencing technology.

Drug Metabolism, Pharmacokinetics and Bioanalysis

Authors: ---
ISBN: 9783038979166 9783038979173 Year: Pages: 230 DOI: 10.3390/books978-3-03897-917-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Therapeutics
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Drug metabolism/pharmacokinetics and drug interaction studies have been extensively carried out in order to secure the druggability and safety of new chemical entities throughout the development of new drugs. Recently, drug metabolism and transport by phase II drug metabolizing enzymes and drug transporters, respectively, as well as phase I drug metabolizing enzymes, have been studied. A combination of biochemical advances in the function and regulation of drug metabolizing enzymes and automated analytical technologies are revolutionizing drug metabolism research. There are also potential drug–drug interactions with co-administered drugs due to inhibition and/or induction of drug metabolic enzymes and drug transporters. In addition, drug interaction studies have been actively performed to develop substrate cocktails that do not interfere with each other and a simultaneous analytical method of substrate drugs and their metabolites using a tandem mass spectrometer. This Special Issue has the aim of highlighting current progress in drug metabolism/pharmacokinetics, drug interactions, and bioanalysis.

Keywords

procainamide --- N-acetylprocainamide --- ultra-high-pressure liquid chromatography --- rat --- plasma --- pharmacokinetics --- adalimumab --- immunoprecipitation --- liquid chromatography-quadrupole TOF MS --- bioanalysis --- GB3 --- Fabry disease --- LC-QTOF-MS/MS --- B6 --- 129-Glatm1Kul/J --- cytochrome P450 --- drug interaction --- liquid chromatography-tandem mass spectrometry --- organic anion transporting polypeptide --- pharmacokinetics --- Korean red ginseng extract --- metformin --- diabetes --- drug interaction --- pharmacokinetics --- efficacy --- ethyl glucuronide --- hair --- HPLC-MS/MS --- AUDIT score --- alcohol addiction --- eurycomanone --- Eurycoma longifolia --- bioavailability --- pharmacokinetic --- anthraquinone --- glycoside --- aglycone --- LC-MS/MS --- plasma --- protein precipitation --- loxoprofen --- CYP --- UGT --- human liver microsomes --- LC-HR/MS --- mematine --- drug interaction --- liquid chromatography-tandem mass spectrometry --- pharmacokinetics --- biopharmaceuticals --- drying technology --- protein stability --- bioavailability --- pharmacokinetics --- DA-9805 --- saikosaponin a --- paeonol --- imperatorin --- pharmacokinetics --- brain distribution --- Osthenol --- CYP --- UGT --- human liver microsomes --- glucuronidation --- Stauntonia hexaphylla leaf extract --- YRA-1909 --- pharmacokinetics --- chlorogenic acid --- neochlorogenic acid --- cryptochlorogenic acid --- caffeic acid --- caffeic acid O-glucuronides --- LC-MS/MS --- aceclofenac --- diclofenac --- esomeprazole --- pharmacokinetics --- gastric ulcer --- acetyl tributyl citrate --- pharmaceutical excipient --- pharmacokinetics --- metabolic stability --- plasma

The Impact of Caffeine and Coffee on Human Health

Authors: ---
ISBN: 9783039218349 9783039218356 Year: Pages: 322 DOI: 10.3390/books978-3-03921-835-6 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-01-07 09:21:22
License:

Loading...
Export citation

Choose an application

Abstract

The purpose of this Special Issue is to provide a thorough and up-to-date presentation of research investigating the impact of coffee and/or caffeine intake on various health outcomes. Areas of interest include, but are not limited to, the following topics: Human clinical trials of coffee or caffeine use in relation to disease or intermediate phenotypes. Epidemiological studies of habitual coffee or caffeine intake in relation to human health, among the general public, as well as, among special populations (i.e., children, pregnant women, diabetics, cancer patients, hypertensives, etc.). Mechanisms of action of nutrients and other bioactive components of coffee/caffeine. Studies integrating genetic or physiological markers of coffee/caffeine intake to investigations of coffee and health.

Keywords

accidental death --- caffeine --- caffeine intoxication --- intoxication --- Suicide --- HIV-HCV co-infection --- liver fibrosis --- coffee --- alcohol consumption --- coffee --- tea --- European Prospective Investigation into Cancer and Nutrition --- 24-h dietary recall --- whole-blood --- mRNA --- transcriptomics --- gene expression --- coffee --- the Norwegian Women and Cancer Cohort (NOWAC) --- caffeine --- myocardial perfusion --- coronary artery disease --- adenosine --- regadenoson --- dipyridamole --- caffeine intake --- assisted reproduction techniques --- risk factors --- implantation --- clinical pregnancy --- live birth --- epidemiology --- bias --- causation --- coffee --- pregnancy --- coffee --- depression --- cohort study --- Mendelian Randomization --- coffee --- caffeine --- behavior --- causality --- genetic epidemiology --- epidemiological methods --- cardiovascular disease --- coffee consumption --- gene-diet interaction --- longevity --- NADH dehydrogenase --- polymorphism --- serum chloride levels --- CYP1A2 --- ADORA2A --- time trial performance --- caffeine metabolism --- pharmacological ergogenic aid --- polymorphism --- anxiety --- ergogenic --- adenosine receptor --- cytochrome P450 --- caffeine --- pharmacogenomics --- coffee --- caffeine --- chlorogenic acids --- phenolic --- cognition --- cognitive --- mood --- age --- sex --- caffeine --- wine --- chocolate --- aging --- cognition --- adult --- coffee --- hearing --- protection --- tinnitus --- Caffeine --- placebo --- sport --- exercise --- health --- expectancy --- cognitions --- caffeine --- coffee --- systematic review --- pregnancy --- safety --- individual responses --- ergogenic aid --- supplement --- did not respond --- responders --- n/a --- caffeine --- coffee --- tea --- soda --- energy drinks --- mate --- guidelines --- country --- consumption --- population --- public policy --- coffee --- caffeine --- lipids --- biomarkers --- trial --- lysophosphatidylcholine --- lipidomics --- n/a

Transmucosal Absorption Enhancers in the Drug Delivery Field

Authors: --- ---
ISBN: 9783039218486 9783039218493 Year: Pages: 406 DOI: 10.3390/books978-3-03921-849-3 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Therapeutics --- Medicine (General)
Added to DOAB on : 2020-01-30 16:39:46
License:

Loading...
Export citation

Choose an application

Abstract

Development of strategies to assist the movement of poorly permeable molecules across biological barriers has long been the goal of drug delivery science. In the last three decades, there has been an exponential increase in advanced drug delivery systems that aim to address this issue. However, most proprietary delivery technologies that have progressed to clinical development are based on permeation enhancers (PEs) that have a history of safe use in man. This Special Issue entitled “Transmucosal Absorption Enhancers in the Drug Delivery Field” aims to present the current state-of-the-art in the application of PEs to improve drug absorption. Emphasis is placed on identification of novel permeation enhancers, mechanisms of barrier alteration, physicochemical properties of PEs that contribute to optimal enhancement action, new delivery models to assess PEs, studies assessing safety of PEs, approaches to assist translation of PEs into effective oral, nasal, ocular and vaginal dosage forms and combining PEs with other delivery strategies.

Keywords

absorption enhancers --- sugar-based surfactants --- biocompatibility studies --- transmucosal drug delivery --- intestinal permeation enhancers --- sodium cholate (NaC) --- N-dodecyl-?-D-maltoside (DDM) --- small intestine --- enterocyte --- brush border --- tryptophan --- oral delivery --- insulin --- GLP-1 --- intestinal absorption --- amino acid --- cell-penetrating peptide --- combined microsphere --- chitosan --- cyclodextrin --- nasal delivery --- nose to brain transport --- penetration enhancer --- nasal formulation --- in vivo studies --- nose to brain delivery --- antiepileptic drug --- drug delivery --- block copolymers --- thermogel system --- chitosan derivatives --- amphiphilic polymers --- polymeric micelles --- quaternization --- curcumin --- intestinal delivery --- mucoadhesiveness --- cervicovaginal tumors --- cationic functionalization --- imatinib --- nanocrystals --- in situ hydrogel --- bioenhancer --- cytochrome P450 --- drug absorption enhancer --- efflux --- metabolism --- P-glycoprotein --- pharmacokinetic interaction --- tight junction --- Aloe vera --- gel --- whole leaf --- absorption enhancement --- Caco-2 --- confocal laser scanning microscopy --- F-actin --- FITC-dextran --- tight junctions --- transepithelial electrical resistance --- permeation enhancer --- oral delivery --- formulation --- permeability --- safety --- simulated intestinal fluid --- hydrophobization --- epithelium --- compound 48/80 --- chitosan --- nanoparticles --- mast cell activator --- vaccine adjuvant --- nasal vaccination --- absorption enhancer --- antimicrobial peptide --- Caco-2 --- claudin --- cell-penetrating peptide (CPP) --- drug delivery --- intestinal epithelial cells --- KLAL --- PN159 --- tight junction modulator --- oral macromolecule delivery --- oral peptides --- sodium caprate --- salcaprozate sodium --- epithelial permeability --- epithelial transport --- nasal permeability --- nose-to-brain --- simvastatin --- nanocapsules --- mucoadhesion --- CNS disorders --- chitosan --- nasal --- pulmonary --- drug administration --- absorption enhancers --- nanoparticle --- and liposome --- absorption enhancer --- gemini surfactant --- intestinal absorption --- poorly absorbed drug --- Caco-2 cells --- PTH 1-34 --- teriparatide --- nasal delivery --- pharmacokinetics --- osteoporosis --- man --- sheep --- clinical trial --- preclinical --- Caco-2 --- intestinal absorption --- nanomedicine --- nanoparticle --- oral delivery --- transferrin --- ocular drug delivery --- cornea --- penetration enhancers --- ocular conditions --- ophthalmology --- permeation enhancers --- absorption modifying excipients --- oral delivery --- nasal delivery --- ocular delivery --- vaginal delivery --- transmucosal permeation

Kidney Inflammation, Injury and Regeneration

Authors: --- ---
ISBN: 9783039285389 / 9783039285396 Year: Pages: 496 DOI: 10.3390/books978-3-03928-539-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Acute kidney injury (AKI) is still associated with high morbidity and mortality incidence rates, and also bears an elevated risk of subsequent chronic kidney disease. Although the kidney has a remarkable capacity for regeneration after injury and may recover completely depending on the type of renal lesions, the options for clinical intervention are restricted to fluid management and extracorporeal kidney support. The development of novel therapies to prevent AKI, to improve renal regeneration capacity after AKI, and to preserve renal function is urgently needed. The Special Issue covers research articles that investigated the molecular mechanisms of inflammation and injury during different renal pathologies, renal regeneration, diagnostics using new biomarkers, and the effects of different stimuli like medication or bacterial components on isolated renal cells or in vivo models. The Special Issue contains important reviews that consider the current knowledge of cell death and regeneration, inflammation, and the molecular mechanisms of kidney diseases. In addition, the potential of cell-based therapy approaches that use mesenchymal stromal/stem cells or their derivates is summarized. This edition is complemented by reviews that deal with the current data situation on other specific topics like diabetes and diabetic nephropathy or new therapeutic targets.

Keywords

kidney injury --- alport syndrome --- modifier gene --- nephrin --- podocin --- glomerular basement membrane --- slit diaphragm --- focal segmental glomerulosclerosis --- inflammatory bowel disease (IBD) --- DSS-colitis --- glomerular filtration barrier (GFB) --- type IV collagen --- type I collagen --- type V collagen --- genotype --- IL-18 --- polymorphism --- renal cell carcinoma --- Taiwan --- mesenchymal stem cells --- acute and chronic kidney disease --- exosome --- natural products --- non-coding RNAs --- microRNAs --- long non-coding RNAs --- renal fibrosis --- biomarkers --- therapeutics targets --- rhabdomyolysis --- pigment nephropathy --- haem --- NLRP3 inflammasome --- acute kidney injury --- hypertension --- kidney --- molecular signaling --- hematuria --- inflammation --- oxidative stress --- tubular injury --- AKI --- chronic kidney disease (CKD) --- mesenchymal stromal cells --- extracellular vesicles --- acute kidney injury --- modified-MSCs --- microRNA --- mesenchymal stem cell --- mesodermal stem cell --- renal ischemia-reperfusion --- inflammation --- kidney transplantation --- microRNA --- extracellular vesicles --- exosomes --- B-cell attracting chemokine --- CXCL13 --- kidney transplantation --- allograft rejection --- T cell-mediated rejection --- diabetic nephropathy --- lysophosphatidic acid --- lysophosphatidic acid receptor --- chronic kidney injury --- kidney proximal tubule --- acute kidney failure --- signal transduction --- transcription --- CREB Regulated Transcriptional Coactivators (CRTC) --- cAMP Regulatory Element Binding Protein (CREB) --- Salt Inducible Kinase (SIK) --- Class IIa Histone Deacetylases (HDAC) --- lncRNA --- long non-coding RNA --- miRNA --- kidney --- glomerulus --- podocyte --- acute kidney injury --- AKI --- diabetic nephropathy --- diabetic kidney disease --- diabetic nephropathy --- inflammation --- signaling cascade --- ischemia-reperfusion --- acute kidney injury --- stem cell --- conditioned medium --- inflammation --- apoptosis --- necrosis --- regulated necrosis --- kidney injury --- tubular injury --- glomerular injury --- polyunsaturated fatty acids --- omega-3 fatty acid --- inflammatory maker --- C-reactive protein --- interleukin-6 --- LPS-binding protein --- fibrosis --- pericyte --- myofibroblast --- endotoxemia-induced oliguric kidney injury --- arachidonic acid --- cyclooxygenase --- lipoxygenase --- cytochrome P450 --- kidney inflammation --- therapeutic target --- obese kidney fibrosis --- endotoxemia --- ROS --- cPLA2 and COX-2 --- IgA nephropathy --- KIT assay --- KIT-IgA score --- noninvasive --- diagnostics --- prediction --- diabetic kidney diseases --- xanthine oxidase --- glomerular damage --- acute kidney injury --- chronic kidney disease --- renal progenitors --- polyploidization --- diabetic nephropathy --- diabetes mellitus --- GLP-1 receptor agonists --- SGLT2 inhibitors --- molecular mechanisms --- chemerin --- CmklR1 --- 2-kidney-1-clip --- 2k1c --- Thy1.1 nephritis --- renovascular hypertension --- renal inflammation --- renal injury --- renal fibrosis --- inflammation --- ischemia/reperfusion injury --- Farnesiferol B --- Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-?B) --- G-protein-coupled bile acid receptor (TGR5) --- renal stem cells --- differentiation --- scattered tubular cells --- papilla --- niches --- renal tubular cells --- epithelial cells --- proximal tubule --- cytotoxicity --- injury --- inflammation --- empagliflozin --- dapagliflozin --- kidney --- n/a

Listing 1 - 8 of 8
Sort by
Narrow your search