Search results: Found 5

Listing 1 - 5 of 5
Sort by
Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts

Authors: ---
ISBN: 9783039213634 / 9783039213641 Year: Pages: 376 DOI: 10.3390/books978-3-03921-364-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General) --- Public Health
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Several species of Dinophysis produce one or two groups of lipophilic toxins: okadaic acid (OA) and its derivatives; or the dinophysistoxins (DTXs) (also known as diarrhetic shellfish poisons or DSP toxins) and pectenotoxins (PTXs). DSP toxins are potent inhibitors of protein phosphatases, causing gastrointestinal intoxication in consumers of contaminated seafood. Forty years after the identification of Dinophysis as the causative agent of DSP in Japan, contamination of filter feeding shellfish exposed to Dinophysis blooms is recognized as a problem worldwide. DSP events affect public health and cause considerable losses to the shellfish industry. Costly monitoring programs are implemented in regions with relevant shellfish production to prevent these socioeconomic impacts. Harvest closures are enforced whenever toxin levels exceed regulatory limits (RLs). Dinophysis species are kleptoplastidic dinoflagellates; they feed on ciliates (Mesodinium genus) that have previously acquired plastids from cryptophycean (genera Teleaulax, Plagioselmis, and Geminigera) nanoflagellates. The interactions of Dinophysis with different prey regulate their growth and toxin production. When Dinophysis cells are ingested by shellfish, their toxins are partially biotransformed and bioaccumulated, rendering the shellfish unsuitable for human consumption. DSP toxins may also affect shellfish metabolism. This book covers diverse aspects of the abovementioned topics—from the laboratory culture of Dinophysis and the kinetics of uptake, transformation, and depuration of DSP toxins in shellfish to Dinophysis population dynamics, the monitoring and regulation of DSP toxins, and their impact on the shellfish industry in some of the aquaculture regions that are traditionally most affected, namely, northeastern Japan, western Europe, southern Chile, and New Zealand.

Keywords

harmful algal bloom --- Diarrheic Shellfish Poisoning --- okadaic acid --- toxin accumulation --- toxin vectors --- trophic transfer --- Brazil --- diarrhetic shellfish toxins (DST) --- Mytilus galloprovincialis --- DST accumulation --- DST esterification --- suspended particulate matter (SPM) --- harmful algal blooms --- okadaic acid --- Argopecten irradians --- transcriptomic response --- deep sequencing --- pectenotoxins --- surf clam --- accumulation --- biotransformation --- depuration --- diarrhetic shellfish toxins --- accumulation --- dinophysistoxin --- Japanese scallop --- dinophysis --- LC/MS/MS --- statistical analysis --- Dinophysis --- HAB monitoring --- DSP toxins --- aquaculture --- shellfish toxicity --- human health --- time-series --- seasonality --- Scotland --- DSP toxins --- bivalves --- mussel --- resistance --- RNA-Seq --- qPCR --- metabolism --- defense --- immunity --- DSP toxins --- pectenotoxins --- Dinophysis acuminata --- Mesodinium rubrum --- bacterial community --- high throughput sequencing --- diarrhetic shellfish toxins --- Dinophysis --- wild harvest --- bivalve shellfish --- pipis (Plebidonax deltoides) --- Sydney rock oyster (Saccostrea glomerata) --- okadaic acid --- pectenotoxins --- Dinophysis toxins --- accumulation --- digestion --- biotransformation --- compartmentalization --- depuration --- kinetics --- Dinophysis --- diarrhetic shellfish poisoning --- marine toxins --- pectenotoxin --- okadaic acid --- dinophysistoxin --- okadaic acid --- pectenotoxins --- Dinophysis --- D. acuminata-complex --- D. caudata --- Argopecten purpuratus --- Dinophysis --- Mesodinium --- cryptophytes --- predator-prey preferences --- Diarrhetic Shellfish Toxins (DST) --- pectenotoxins (PTXs) --- mixotrophic cultures --- mass culture conditions --- Dinophysis acuminata --- Protoceratium reticulatum --- Reloncaví Fjord --- OMI analysis --- WitOMI analysis --- Mesodinium cf. rubrum --- El Niño Southern Oscillation --- Southern Annual Mode --- Dinophysis acuta --- Dinophysis acuminata --- DSP --- physical–biological interactions --- niche partitioning --- climatic anomaly --- Dinophysis acuminata --- Mesodinium rubrum --- lysate --- organic matter --- diarrhetic shellfish poisoning --- okadaic acid --- dinophysistoxin --- pectenotoxins --- dinophysis --- DSP --- toxins --- OA --- DTX-2 --- PTXs --- Dinophysis acuminata --- dinophysistoxins --- pectenotoxins --- Port Underwood --- New Zealand --- Dinophysis --- Diarrhetic shellfish toxins --- marine biotoxins --- blooms --- n/a

Open-Source Electronics Platforms

Author:
ISBN: 9783038979722 / 9783038979739 Year: Pages: 262 DOI: 10.3390/books978-3-03897-973-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.

Keywords

human-computer interface (HCI) --- electrooculogram (EOG) --- electromyogram (EMG) --- modified sliding window algorithm --- piecewise linear approximation (PLA) --- support vector regression --- eye tracking --- blockchain --- ontology --- context --- cyber-physical systems --- robotics --- interaction --- coalition --- individual management of livestock --- momentum data sensing --- remote sensing platform --- sensor networks --- technology convergence --- industry 4.0 --- distributed measurement systems --- automation networks --- node-RED --- cloud computing --- OPC UA --- hardware trojan taxonomy --- thermal imaging --- side channel analysis --- infrared --- FPGA --- Internet of Things --- wireless sensor networks --- Cloud of Things --- virtual sensor --- sensor detection --- smart cities --- Internet of Things --- Raspberry Pi --- BeagleBoard --- Arduino --- Internet of Things --- open hardware --- smart farming --- teaching robotics --- science teaching --- STEM --- robotic tool --- Python --- Raspberry Pi --- PiCamera --- vision system --- service learning --- robotics --- open platform --- automated vehicle --- EPICS --- open-source platform --- visual algorithms --- digital signal controllers --- embedded systems education --- dsPIC --- Java --- smart converter --- maximum power point tracking (MPPT) --- photovoltaic (PV) system --- Field Programmable Gate Array (FPGA) --- Digital Signal Processor (DSP) --- interleaved --- DC/DC converter --- distributed energy resource --- n/a

Middleware Solutions for Wireless Internet of Things

Authors: --- --- ---
ISBN: 9783039210367 / 9783039210374 Year: Pages: 262 DOI: 10.3390/books978-3-03921-037-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The proliferation of powerful but cheap devices, together with the availability of a plethora of wireless technologies, has pushed for the spread of the Wireless Internet of Things (WIoT), which is typically much more heterogeneous, dynamic, and general-purpose if compared with the traditional IoT. The WIoT is characterized by the dynamic interaction of traditional infrastructure-side devices, e.g., sensors and actuators, provided by municipalities in Smart City infrastructures, and other portable and more opportunistic ones, such as mobile smartphones, opportunistically integrated to dynamically extend and enhance the WIoT environment. A key enabler of this vision is the advancement of software and middleware technologies in various mobile-related sectors, ranging from the effective synergic management of wireless communications to mobility/adaptivity support in operating systems and differentiated integration and management of devices with heterogeneous capabilities in middleware, from horizontal support to crowdsourcing in different application domains to dynamic offloading to cloud resources, only to mention a few. The book presents state-of-the-art contributions in the articulated WIoT area by providing novel insights about the development and adoption of middleware solutions to enable the WIoT vision in a wide spectrum of heterogeneous scenarios, ranging from industrial environments to educational devices. The presented solutions provide readers with differentiated point of views, by demonstrating how the WIoT vision can be applied to several aspects of our daily life in a pervasive manner.

Power Electronics in Renewable Energy Systems

Authors: ---
ISBN: 9783039210442 / 9783039210459 Year: Pages: 604 DOI: 10.3390/books978-3-03921-045-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.

Keywords

modular multilevel converter --- battery energy storage system --- state-of-charge balancing --- second-life battery --- multi-energy complementary --- microgrid --- demand response --- operation optimization --- electricity price --- peak-current-mode control --- dynamic modeling --- duty-ratio constraints --- discontinuous conduction mode --- FACTS devices --- active power filter --- static compensator --- control strategies --- grid-connected converter --- SPWM --- SVM --- maximum power point tracking --- open circuit voltage --- perturb and observe --- thermoelectric generator --- two-stage photovoltaic power --- virtual synchronous generator --- adaptive-MPPT (maximum power point tracking) --- improved-VSG (virtual synchronous generator) --- power matching --- failure zone --- governor --- frequency regulation --- inverter --- voltage-type control --- static frequency characteristics --- grid-connected converter --- adaptive resonant controller --- PLL --- impedance analysis --- distorted grid --- digital signal processor (DSP) TMS320F28335 --- grid-connected inverter --- internal model --- linear quadratic regulator --- LCL filter --- photovoltaic systems --- multilevel power converter --- soft switching --- selective harmonic mitigation --- phase shifted --- voltage cancellation --- adaptive control --- sliding mode control --- speed control --- wind energy system --- microgrid (MG) --- droop control --- washout filter --- hardware in the loop (HIL) --- active front-end converter --- back-to-back converter --- permanent magnet synchronous generator (PMSG) --- THD --- type-4 wind turbine --- wind energy system --- Opal-RT Technologies® --- synchronization --- adaptive notch filter (ANF) --- phase-locked loop (PLL) --- wind power prediction --- phase space reconstruction --- multivariate linear regression --- cloud computing --- time series --- multiple VSGs --- oscillation mitigation --- coordinated control --- small-signal and transient stability --- coordination control --- energy storage --- grid support function --- inertia --- photovoltaic --- virtual synchronous generator --- weak grid --- parallel inverters --- oscillation suppression --- notch filter --- impedance reshaping --- boost converter --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- doubly-fed induction generator --- short-circuit fault --- frequency regulation --- variable power tracking control --- improved additional frequency control --- variable coefficient regulation --- inertia and damping characteristics --- generator speed control --- electrical power generation --- turbine and generator --- grid-connected converter --- organic Rankine cycle --- renewable energy --- multiport converter (MPC) --- single ended primary inductor converter (SEPIC) --- multi-input single output (MISO) --- renewable power system --- coupled oscillators --- virtual impedance --- synchronization --- power converters --- droop control --- virtual admittance --- distributed generation --- energy --- renewable energy --- microgrids --- Energy Internet --- energy router --- microgrid --- electric vehicle --- PV --- battery-energy storage --- DC-AC power converters --- impedance emulation --- stability analysis --- power-hardware-in- the-loop --- photovoltaic generators --- maximum power point tracking --- step size --- perturbation frequency --- source and load impedance --- transient dynamics --- stability --- grid synchronization --- power electronics --- power grid --- inverter --- grid-connected --- microgrid --- experiment --- modules --- synchronverter --- power ripple elimination --- resonant controller --- unbalanced power grid --- ROCOF --- PLL --- error --- low inertia --- VSC --- n/a

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Authors: ---
ISBN: 9783039214815 / 9783039214822 Year: Pages: 548 DOI: 10.3390/books978-3-03921-482-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Electrical and Nuclear Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

Keywords

DC–DC conversion --- interleaved buck --- parasitic switching states --- three-level converter --- simplified PWM strategy --- redundant switching combination --- voltage balance control --- modular multilevel converter --- IGBT short-circuit --- fault detection --- fault location --- Differential Comparison Low-Voltage Detection Method (DCLVDM) --- Continuous Wavelet Transform --- digital controller --- digital signal processors (DSP) --- modular multilevel converters (MMC) --- multi-terminal DC network (MTDC) --- MMC-MTDC --- hybrid modulated model predictive control --- optimal output voltage level --- multi-point DC control --- neutral-point-clamped (NPC) inverter --- dc-link capacitor voltage balance --- offset voltage injection --- harmonic component --- modular multilevel converters --- capacitor voltage balancing --- sorting networks --- field-programmable gate array --- low-harmonic DC ice-melting device --- transmission line --- voltage fluctuation --- harmonic --- dynamic reactive --- substation’s voltage stability --- alternating current (AC) motor drive --- current estimation --- current reconstruction method --- current unmeasurable areas --- total harmonic distortion (THD) --- single shunt resistor --- space vector pulse width modulation (SVPWM) --- shift method --- minimum voltage injection (MVI) method --- three-level neutral point clamped inverter (NPCI) --- three-level boost --- automatic current balance --- three-loop --- voltage imbalance --- DC-link voltage balancing --- field-oriented control --- field-programmable gate array --- multilevel active-clamped converter --- motor drive --- buck-chopper --- PV-simulator --- T-type converter --- real time simulator --- three-level boost DC-DC converter --- small signal modeling --- voltage balance control --- multilevel converter --- selected harmonic elimination --- genetic algorithm --- imperialist competitive algorithm --- voltage ripple --- voltage source inverter --- three-phase inverter --- DC-link capacitor design --- Cascaded H-bridge multilevel inverter (CHBMI) --- field-programmable gate array --- total harmonic distortion (THD) --- modulation techniques --- multilevel converter --- electric vehicle --- on-board battery charger --- power factor correction --- power quality --- smart grid --- model predictive control --- single-phase three-level NPC converter --- commutation --- modular multilevel converter (MMC) --- Sub-module (SM) fault --- fault-tolerant control --- Phase Disposition PWM --- finite control set model predictive control --- T-type inverter --- computational cost --- LC filter --- DC-link capacitor voltage balancing --- multilevel converter --- DC side fault blocking --- predictive control --- battery energy storage system (BESS) --- modular multilevel converter (MMC) --- state-of-charge (SOC) balancing control --- tolerance for battery power unbalance --- model predictive control (MPC) --- computational burden --- reverse prediction --- modular multilevel converter (MMC) --- multilevel inverters --- total harmonic distortion --- level-shifted PWM --- phase-shifted PWM --- electrical drives --- energy saving --- multilevel power converters --- permanent magnet synchronous generator --- open-end winding configuration --- voltage balancing --- power factor --- improved PQ algorithm --- power flow analysis --- three-phase to single-phase cascaded converter --- ACTPSS --- NPC/H Bridge --- five-level --- Balance of capacitor voltage --- Suppression of CMV --- SVPWM --- multilevel converter --- multi-motor drive --- harmonic mitigation --- active filter --- open end winding motor --- high efficiency drive --- high reliability applications

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

eng (5)


Year
From To Submit

2019 (5)