Search results: Found 4

Listing 1 - 4 of 4
Sort by
Océan et climat

Author:
ISBN: 9782709924900 DOI: 10.4000/books.irdeditions.25499 Language: French
Publisher: IRD Éditions
Added to DOAB on : 2019-07-31 11:25:14
License: OpenEdition Licence for Books

Loading...
Export citation

Choose an application

Abstract

On mesure depuis peu le rôle essentiel joué par l'océan dans les mécanismes complexes qui régissent le climat. En stockant la chaleur reçue du Soleil pour la transporter des tropiques vers les régions tempérées, l'océan interagit avec l’atmosphère, contribuant à rendre notre planète habitable. Dans le contexte du réchauffement climatique global, l'étude tes relations entre l’océan et le climat est devenue un enjeu scientifique majeur. En quelques décennies, l'océanographie physique est passée d'une approche descriptive et géographique à une approche géophysique. Cette mutation spectaculaire a été rendue possible grâce au développement de programmes internationaux sans précédent, auxquels se sont ajoutés les apports déterminants de' l’observation spatiale et de la modélisation numérique. Ce vaste déploiement de moyens techniques, scientifiques et humains est à l’origine de la découverte des mécanismes fondamentaux de la dynamique des océans, et du rôle particulier des océans tropicaux dans la variabilité climatique. Accessible à un large public, cet ouvrage retrace dans sa dimension scientifique et humaine les conquêtes d'une discipline en plein essor, à présent au cœur des questionnements sur le climat futur.

Earth Observation, Remote Sensing and Geoscientific Ground Investigations for Archaeological and Heritage Research

Author:
ISBN: 9783039211937 / 9783039211944 Year: Pages: 304 DOI: 10.3390/books978-3-03921-194-4 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General)
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

This book collects 15 papers written by renowned scholars from across the globe that showcase the forefront research in Earth observation (EO), remote sensing (RS), and geoscientific ground investigations to study archaeological records and cultural heritage.Archaeologists, anthropologists, geographers, remote sensing, and archaeometry experts share their methodologies relying on a wealth of techniques and data including, but not limited to: very high resolution satellite images from optical and radar space-borne sensors, air-borne surveys, geographic information systems (GIS), archaeological fieldwork, and historical maps.A couple of the contributions highlight the value of noninvasive and nondestructive laboratory analyses (e.g., neutron diffraction) to reconstruct ancient manufacturing technologies, and of geological ground investigations to corroborate hypotheses of historical events that shaped cultural landscapes.Case studies encompass famous UNESCO World Heritage Sites (e.g., the Nasca Lines in Peru), remote and yet-to-discover archaeological areas in tropical forests in central America, European countries, south Asian changing landscapes, and environments which are arid nowadays but were probably full of woody vegetation in the past.Finally, the reader can learn about the state-of-the-art of education initiatives to train site managers in the use of space technologies in support of their activities, and can understand the legal aspects involved in the application of EO and RS to address current challenges of African heritage preservation.

Keywords

analytic hierarchy process (AHP) --- archaeology --- predictive model --- tumuli --- remote sensing --- multi-criteria --- Saharan Morocco --- airborne laser scanning --- orthophotographs --- archaeological survey --- field reconnaissance --- Arran --- national archaeological mapping programme --- synthetic aperture radar --- subsurface imaging --- microwave penetration --- archaeology --- arid environments --- remote sensing --- Oman --- e-learning --- Earth observation --- education --- capacity development --- cultural and natural heritage --- UNESCO --- photogrammetry --- RPAS --- UAV --- Peru --- geoglyph Pista --- mapping --- drones --- remote sensing --- free satellite imagery --- GoogleEarth --- Bing Maps --- archaeological fieldwork --- arid environments --- basalt desert --- landscape accessibility --- Harra --- Jordan --- archaeological landscapes --- settlements --- historical maps --- Survey of India --- Archaeological Survey of India --- heritage --- colonial studies --- remote sensing --- historical landscapes --- landscape archaeology --- settlements --- colonial studies --- river morphology --- Indus --- floods --- remote sensing --- satellite --- Sentinel-2 --- surface survey --- Roman archaeology --- Sumerian pottery --- neutron techniques --- neutron diffraction --- chemometric analysis --- Mega El Niño --- pampa of Nazca --- Cuenca Pisco --- Rio Grande de Nazca --- grain-size --- volcaniclastic layer --- stratigraphy --- petrography --- Lidar --- GIS --- Mesoamerica --- Archaeology --- Caves --- Landscape --- Ritual --- Visualization --- Maya --- Belize --- Sacred --- automated detection --- OBIA --- LiDAR --- Difference Map --- field monument --- Burial Mound --- Motte-and-Bailey castle --- Ridge and Furrow --- space law --- disaster and conservation management --- Geographic Information System (GIS) --- international boundaries --- Africa --- Cameroon-Nigeria Mixed Commission --- satellite imagery --- Boundary Demarcation --- international law --- relict boundaries --- Earth Observation --- remote sensing --- optical --- SAR --- drone --- airborne LiDAR --- GIS --- OBIA --- neutron diffraction --- archaeological prospection --- pattern recognition --- archaeometry --- geological mapping

Entropy Applications in Environmental and Water Engineering

Authors: --- ---
ISBN: 9783038972228 Year: Pages: 512 DOI: 10.3390/books978-3-03897-223-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

Keywords

complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering

Adaptive Catchment Management and Reservoir Operation

Authors: --- ---
ISBN: 9783038977384 / 9783038977391 Year: Pages: 498 DOI: 10.3390/books978-3-03897-739-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

River catchments and reservoirs play a central role in water security, food supply, flood risk management, hydropower generation, and ecosystem services; however, they are now under increasing pressure from population growth, economic activities, and changing climate means and extremes in many parts of the world. Adaptive management of river catchments and reservoirs requires an in-depth understanding of the impacts of future uncertainties and thus the development of robust, sustainable solutions to meet the needs of various stakeholders and the environment. To tackle the huge challenges in moving towards adaptive catchment management, this book presents the latest developments in cutting-edge knowledge, novel methodologies, innovative management strategies, and case studies, focusing on the following themes: reservoir dynamics and impact analysis of dam construction, optimal reservoir operation, climate change impacts on hydrological processes and water management, and integrated catchment management.

Keywords

Siemianówka --- hydrology --- Narew River --- dam --- reservoir --- discharge --- flow regime --- reservoir flushing --- numerical simulation --- flushing efficiency --- Kurobe River --- two-dimensional bed evolution model --- sediment flushing of empty storage --- shaft spillway pipe --- sediment flushing efficiency --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- Jingjiang River Reach --- Yangtze River --- CO2 --- reservoirs --- general regression neural network --- back propagation neural network --- climate change --- CMIP3 --- CMIP5 --- downscaling --- runoff response --- SWAT model --- stochastic linear programming --- Markov chain --- reliability --- vulnerability --- reservoir operation --- stochastic dynamic programming --- protection zone --- nutrient uptake --- NPP --- South-to-North Water Transfer Project --- Miyun Reservoir --- reservoir operation --- optimization --- SWAT --- HEC-ResPRM --- climate change --- CORDEX-Africa --- Tekeze basin --- long distance water diversion --- inverted siphon --- sensitivity analysis --- integrated supply system modeling --- sediment regime --- suspended sediment concentration --- vertical profiles of concentration --- the Jingjiang River Reach --- the Yangtze River --- reservoir operation --- multi-stage stochastic optimization --- TB-MPC --- flood control --- real-time control --- energy --- hydropower stations --- differential evolution algorithm --- optimal scheduling --- ?-constrained method --- drinking water resources --- water environmental capacity (WEC) --- Environmental Fluid Dynamics Code (EFDC) model --- the Huangshi Reservoir --- seasonal rainfall --- upper Chao Phraya River Basin --- El Niño/Southern Oscillation --- Indian Monsoon --- sea surface temperatures --- reverse regulation --- coupling model --- aftereffect --- accompanying progressive optimality algorithm --- Dokan Dam --- runoff --- sediment load --- SWAT --- natural flow regime --- multi-objective model --- uncertainty --- genetic algorithm --- land and water resources --- system dynamics --- modeling --- scenario analysis --- Heilongjiang --- tropical reservoir --- heating impact --- Langcang-Mekong River --- Kappa distribution --- parameter relation --- partial gauged basin --- power function --- ratio curve --- ungauged basin --- reservoir operation --- integrated surface water-groundwater model --- Heihe River Basin --- environmental flow --- irrigation --- design and operation of the multipurpose reservoir --- water deficit --- reservoir simulation model --- climate change --- multi-objective optimization NSGA II --- resilience and robustness --- costs and benefits --- water energy --- multi-agent of river basin --- game theory --- water resources allocation --- optimal flood control operation --- cascade reservoirs --- dynamic programming with progressive optimality algorithm (DP-POA) --- the upper Yangtze River Basin --- parameterization --- simulation --- optimization --- direct policy search --- hedging policy --- shortage ratio: Vulnerability --- NSGA-II --- lentic habitats --- bitterling --- mussel --- floodplain vertical shape index --- sediment management --- adaptive management --- catchment modelling --- integrated management --- reservoir operation

Listing 1 - 4 of 4
Sort by
Narrow your search