Search results: Found 33

Listing 1 - 10 of 33 << page
of 4
>>
Sort by
Nutrition, Health and Athletic Performance

Authors: ---
ISBN: 9783038426264 9783038426271 Year: Pages: 528 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Nutrition and Food Sciences
Added to DOAB on : 2018-01-10 13:09:56
License:

Loading...
Export citation

Choose an application

Abstract

Optimal nutrition is fundamental for enhancing training, recovery and performance in sport. Therefore, research has aimed to determine the efficacy of appropriate intake of nutrients, fluids, and supplements and their role in exercise performance. The purpose of this Special Issue entitled “Nutrition, Health and Athletic Performance” is to highlight recent research examining aspects of sports nutrition and exercise performance. Manuscript submissions of original research, meta-analyses, or reviews of the scientific literature, which targets nutritional strategies to benefit performance and health, are welcome. Studies performed in humans are preferred given the applied nature of this issue.

Executive Function(s): Conductor, Orchestra or Symphony? Towards a Trans-Disciplinary Unification of Theory and Practice Across Development, in Normal and Atypical Groups

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455553 Year: Pages: 245 DOI: 10.3389/978-2-88945-555-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

There are several theories of executive function(s) that tend to share some theoretical overlap yet are also conceptually distinct, each bolstered by empirical data (Norman and Shallice, 1986; Shallice &amp; Burgess, 1991; Stuss and Alexander, 2007; Burgess, Gilbert, &amp; Dumentheil, 2007; Burgess &amp; Shallice, 1996; Miyake et al., 2000). The notion that executive processes are supervisory, and most in demand in novel situations was an early conceptualization of executive function that has been adapted and refined over time (Norman &amp; Shallice, 1986; Shallice, 2001; Burgess, Gilbert &amp; Dumentheil, 2007). Presently there is general consensus that executive functions are multi-componential (Shallice, 2001), and are supervisory only in the sense that attention in one form or another is key to the co-ordination of other hierarchically organized ‘lower’ cognitive processes. Attention in this sense is defined as (i) independent but interrelated attentional control processes (Stuss &amp; Alexander, 2007); (ii) automatic orientation towards stimuli in the environment or internally–driven thought (Burgess, Gilbert &amp; Dumontheil, 2007); (iii) the automatically generated interface between tacit processes and strategic conscious thought (Barker, Andrade, Romanowski, Morton and Wasti, 2006; Morton and Barker, 2010); and (iv) distinct but interrelated executive processes that maintain, update and switch across different sources of information (Miyake et al., 2000).


One problem is that executive dysfunction or dysexecutive syndrome (Baddeley &amp; Wilson, 1988) after brain injury typically produces a constellation of deficits across social, cognate, emotional and motivational domains that rarely map neatly onto theoretical frameworks (Barker, Andrade &amp; Romanowski, 2004). As a consequence there is debate that conceptual theories of executive function do not always correspond well to the clinical picture (Manchester, Priestley &amp; Jackson, 2004). Several studies have reported cases of individuals with frontal lobe pathology and impaired daily functioning despite having little detectable impairment on traditional tests of executive function (Shallice &amp; Burgess, 1991; Eslinger &amp; Damasio, 1985; Barker, Andrade &amp; Romanowski, 2004; Andrés &amp; Van der Linden, 2002; Chevignard et al., 2000; Cripe, 1998; Fortin, Godbout &amp; Braun, 2003). There is also some suggestion that weak ecological validity limits predictive and clinical utility of many traditional measures of executive function (Burgess et al, 2006; Lamberts, Evans &amp; Spikman, 2010; Barker, Morton, Morrison, McGuire, 2011). Complete elimination of environmental confounds runs the risk of generating results that cannot be generalized beyond constrained circumstances of the test environment (Barker, Andrade &amp; Romanowski, 2004). Several researchers have concluded that a new approach is needed that is mindful of the needs of the clinician yet also informed by the academic debate and progress within the discipline (McFarquhar &amp; Barker, 2012; Burgess et al., 2006). Finally, translational issues also confound executive function research across different disciplines (psychiatry, cognitive science, and developmental psychology) and across typically developing and clinical populations (including Autism Spectrum Disorders, Head Injury and Schizophrenia – Blakemore &amp; Choudhury, 2006; Taylor, Barker, Heavey &amp; McHale, 2013). Consequently, there is a need for unification of executive function approaches across disciplines and populations and narrowing of the conceptual gap between theoretical positions, clinical symptoms and measurement.

Post-Exercise Recovery: Fundamental and Interventional Physiology

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198559 Year: Pages: 78 DOI: 10.3389/978-2-88919-855-9 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Physiological responses after maximal and submaximal exercise are routinely monitored in a plethora of diseases (e.g. cardiovascular diseases, cancer, diabetes, asthma, neuromuscular disorders), and normal populations (e.g. athletes, youth, elderly), while slower or irregular post-exercise recovery usually indicates poor health and/or low fitness level. Abnormal post-exercise recovery (as assessed via blunted post-exercise heart rate dynamics) helps to predict the presence and severity of coronary artery disease, while differences in recovery outcomes in athletes might discriminate between fit and unfit individuals. Disturbances in post-exercise recovery might be due to acute or persistent changes in: (1) adaptive responses mediated by the autonomic nervous system and vasodilator substances, (2) cellular bioenergetics, and/or (3) muscular plasticity. Preliminary evidence suggests possible role of time-dependent modulation of nitric oxide synthase and adenosine receptors during post-exercise recovery, yet no molecular attributes of post-exercise recovery are revealed so far. Currently several markers of post-exercise recovery are used (e.g. heart rate measures, hormone profiles, biochemical and hematological indices); however none of them meets all criteria to make its use generally accepted as the gold standard. In addition, recent studies suggest that different pharmacological agents and dietary interventions, or manipulative actions (e.g. massage, cold-water immersion, compression garments, athletic training) administered before, during or immediately after exercise could positively affect post-exercise recovery. There is a growing interest to provide more evidence-based data concerning the effectiveness and safety of traditional and novel interventions to affect post-exercise recovery. The goals of this research topic are to critically evaluate the current advances on mechanisms and clinical implications of post-exercise recovery, and to summarize recent experimental data from interventional studies. This knowledge may help to identify the hierarchy of key mechanisms, and recognize methods to monitor and improve post-exercise recovery in both health and disease.

50th Anniversary of Adult Neurogenesis: Olfaction, Hippocampus and Beyond

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889199631 Year: Pages: 243 DOI: 10.3389/978-2-88919-963-1 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

In the mid-sixties, the discovery by Altman and co-workers of neurogenesis in the adult brain changed the previous conception of the immutability of this organ during adulthood sustained among others by Cajal. This discovery was ignored up to eighty’s when Nottebohm demonstrated neurogenesis in birds. Subsequently, two main neurogenic zones were characterized: the subventricular zone of the lateral ventricle and the subgranular layer of the dentate gyrus. Half century later, the exact role of new neurons in the adult brain is not completely understand. This book is composed by a number of articles by leaders in the filed covering from an historic perspective to potential therapeutic opportunities.

Keywords

Alzheimer --- Dopamine --- glia --- Epilepsy --- Exercise --- Stroke

Physiological Adaptations to Swimming in Fish

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452460 Year: Pages: 88 DOI: 10.3389/978-2-88945-246-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology --- Oceanography
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Swimming is an integral part of the life history of many fish species as is intimately linked with their ability to express feeding and predator avoidance behaviors, habitat selection and environmental preferences, social and reproductive behaviors as well as migratory behaviors. Therefore, swimming is an important determinant factor of fitness in a true Darwinian sense and, not surprisingly, swimming performance has been often used as a measure of physiological fitness in fish. The main aim of this Research Topic is to showcase some of the current studies designed to improve our understanding of the physiological energetic and metabolic requirements of swimming and of the adaptive responses to swimming in fish.

The Role of Physical Fitness on Cardiovascular Responses to Stress

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194636 Year: Pages: 95 DOI: 10.3389/978-2-88919-463-6 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Cardiovascular responses to physical and/ or mental stressors has been a topic of great interest for some time. For example, significant changes of cardiovascular control and reactivity have been highlighted as important mechanisms for the protective effect of exercise as a simple and effective, non medical therapy for many pathologies. However, despite the great number of studies performed to date (e.g. >54,000 entries in Pubmed for “cardiovascular stress”), important questions of the role stress has on cardiovascular function still remain. For instance, What factors account for the different cardiovascular responses between mental and physical stressors? How do these different components of the cardiovascular system interact during stress? Which cardiovascular responses to stress are the most important for identifying normal, depressed, and enhanced cardiovascular function? Can these stress-induced responses assist with patient diagnosis and prognosis? What impact does physical fitness have on the relationship between cardiovascular function and health? The current topic examined our current understanding of cardiovascular responses to stress and the significant role that physical fitness has on these responses for improved function and health. Manuscripts focusing on heart rate variability (HRV), heart rate recovery, and other novel cardiovascular assessments were especially encouraged.

Regulation of Endurance Performance: New Frontiers

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889453290 Year: Pages: 246 DOI: 10.3389/978-2-88945-329-0 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Physiology
Added to DOAB on : 2018-02-27 16:16:45
License:

Loading...
Export citation

Choose an application

Abstract

Successful endurance performance requires the integration of multiple physiological and psychological systems, working together to regulate exercise intensity in a way that will reduce time taken or increase work done. The systems that ultimately limit performance of the task are hotly contested, and may depend on a variety of factors including the type of task, the environment, external influences, training status of the individual and a host of psychological constructs. These factors can be studied in isolation, or inclusively as a whole-body or integrative system. A reductionist approach has traditionally been favoured, leading to a greater understanding and emphasis on muscle and cardiovascular physiology, but the role of the brain and how this integrates multiple systems is gaining momentum. However, these differing approaches may have led to false dichotomy, and now with better understanding of both fields, there is a need to bring these perspectives together. The divergent viewpoints of the limitations to human performance may have partly arisen because of the different exercise models studied. These can broadly be defined as open loop (where a fixed intensity is maintained until task disengagement), or closed loop (where a fixed distance is completed in the fastest time), which may involve whole-body or single-limb exercise. Closed loop exercise allows an analysis of how exercise intensity is self-regulated (i.e. pacing), and thus may better reflect the demands of competitive endurance performance. However, whilst this model can monitor changes in pacing, this is often at the expense of detecting subtle differences in the measured physiological or psychological variables of interest. Open loop exercise solves this issue, but is limited by its more restrictive exercise model. Nonetheless, much can be learnt from both experimental approaches when these constraints are recognised. Indeed, both models appear equally effective in examining changes in performance, and so the researcher should select the exercise model which can most appropriately test the study hypothesis. Given that a multitude of both internal (e.g. muscle fatigue, perception of effort, dietary intervention, pain etc.) and external (e.g. opponents, crowd presence, course topography, extrinsic reward etc.) factors likely contribute to exercise regulation and endurance performance, it may be that both models are required to gain a comprehensive understanding. Consequently, this research topic seeks to bring together papers on endurance performance from a variety of paradigms and exercise models, with the overarching aim of comparing, examining and integrating their findings to better understand how exercise is regulated and how this may (or may not) limit performance.

Keywords

Pacing --- Performance --- Fatigue --- Exercise --- Brain --- Muscle --- Running --- Cycling --- Triathlon --- Training

Carbohydrate Metabolism in Health and Disease

Author:
ISBN: 9783038429999 9783038970002 Year: Pages: X, 256 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2018-07-04 13:00:08
License:

Loading...
Export citation

Choose an application

Abstract

Carbohydrate metabolism is a fundamental aspect of health and a crucial function in a variety of species, including humans. A primary disfunction in major global diseases, such as cardiovascular disease and diabetes, is dysregulation of thecarbohydrate metabolism. Furthermore, certain disease outcomes may be impacted by the amount and type of dietary carbohydrates consumed. Finally, carbohydrate obtainability is essential for optimal performance and endurance during sporting events. This book collates articles that either describe original research, or review the scientific literature on the topic of carbohydrate metabolism in health and disease. .

The adrenergic system in cardiovascular physiology and pathophysiology

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193981 Year: Pages: 85 DOI: 10.3389/978-2-88919-398-1 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

Cardiovascular diseases pose an enormous clinical challenge, remaining the most common cause of death in the world. ß-adrenoceptors play an important role on cardiac, vascular and/or endothelial function at a cellular level with relevant applications in several cardiovascular diseases, such as heart failure and hypertension. G protein– coupled receptors (GPCRs), including ß-adrenergic receptors, constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Sympathetic nervous system hyperactivity, which characterizes several cardiovascular diseases, such as heart failure and hypertension, as well as physiological ageing, has been proved to exert in the long-term detrimental effects in a wide range of cardiovascular diseases. Acutely, sympathetic hyperactivity represents the response to an insult to the myocardium, aiming to compensate for decreased cardiac output. This process involves the activation of beta-adrenergic receptors by catecholamine with consequent heart rate and cardiac contractility increase. However, long-term exposure of the heart to elevated norepinephrine and epinephrine levels, originating from sympathetic nerve endings and chromaffin cells of the adrenal gland, results in further progressive deterioration in cardiac structure and function. At the molecular level, sustained sympathetic nervous system hyperactivity is responsible for several alterations including altered beta-adrenergic receptor signaling and function (down-regulation/ desensitization). Moreover, the detrimental effects of catecholamine affect also the function of different cell types including, but not limited to, endothelial cells, fibroblasts and smooth muscle cells. Thus, the success of beta-blocker therapy is due, at least in part, to the protection of the heart and the vasculature from the noxious effects of augmented catecholamine levels. The research topic aimed to support the progress towards understanding the role of sympathetic nervous system under physiological conditions, and the contribution of its hyperactivity in the pathogenesis and progression of cardiovascular diseases.

The Adrenergic System in Cardiovascular Physiology and Pathophysiology, 2nd Edition

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197316 Year: Pages: 78 DOI: 10.3389/978-2-88919-731-6 Language: English
Publisher: Frontiers Media SA
Subject: Physiology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Cardiovascular diseases pose an enormous clinical challenge, remaining the most common cause of death in the world. ß-adrenoceptors play an important role on cardiac, vascular and/or endothelial function at a cellular level with relevant applications in several cardiovascular diseases, such as heart failure and hypertension. G protein– coupled receptors (GPCRs), including ß-adrenergic receptors, constitute the most ubiquitous superfamily of plasma membrane receptors and represent the single most important type of therapeutic drug target. Sympathetic nervous system hyperactivity, which characterizes several cardiovascular diseases, such as heart failure and hypertension, as well as physiological ageing, has been proved to exert in the long-term detrimental effects in a wide range of cardiovascular diseases. Acutely, sympathetic hyperactivity represents the response to an insult to the myocardium, aiming to compensate for decreased cardiac output. This process involves the activation of beta-adrenergic receptors by catecholamine with consequent heart rate and cardiac contractility increase. However, long-term exposure of the heart to elevated norepinephrine and epinephrine levels, originating from sympathetic nerve endings and chromaffin cells of the adrenal gland, results in further progressive deterioration in cardiac structure and function. At the molecular level, sustained sympathetic nervous system hyperactivity is responsible for several alterations including altered beta-adrenergic receptor signaling and function (down-regulation/ desensitization). Moreover, the detrimental effects of catecholamine affect also the function of different cell types including, but not limited to, endothelial cells, fibroblasts and smooth muscle cells. Thus, the success of beta-blocker therapy is due, at least in part, to the protection of the heart and the vasculature from the noxious effects of augmented catecholamine levels. The research topic aimed to support the progress towards understanding the role of sympathetic nervous system under physiological conditions, and the contribution of its hyperactivity in the pathogenesis and progression of cardiovascular diseases.

Listing 1 - 10 of 33 << page
of 4
>>
Sort by