Search results: Found 2

Listing 1 - 2 of 2
Sort by
Functional Imaging in living Plants - Cell Biology meets Physiology

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194650 Year: Pages: 114 DOI: 10.3389/978-2-88919-465-0 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

The study of plant cell physiology is currently experiencing a profound transformation. Novel techniques allow dynamic in vivo imaging with subcellular resolution, covering a rapidly growing range of plant cell physiology. Several basic biological questions that have been inaccessible by the traditional combination of biochemical, physiological and cell biological approaches now see major progress. Instead of grinding up tissues, destroying their organisation, or describing cell- and tissue structure, without a measure for its function, novel imaging approaches can provide the critical link between localisation, function and dynamics. Thanks to a fast growing collection of available fluorescent protein variants and sensors, along with innovative new microscopy technologies and quantitative analysis tools, a wide range of plant biology can now be studied in vivo, including cell morphology & migration, protein localization, topology & movement, protein-protein interaction, organelle dynamics, as well as ion, ROS & redox dynamics. Within the cell, genetic targeting of fluorescent protein probes to different organelles and subcellular locations has started to reveal the stringently compartmentalized nature of cell physiology and its sophisticated spatiotemporal regulation in response to environmental stimuli. Most importantly, such cellular processes can be monitored in their natural 3D context, even in complex tissues and organs – a condition not easily met in studies on mammalian cells. Recent new insights into plant cell physiology by functional imaging have been largely driven by technological developments, such as the design of novel sensors, innovative microscopy & imaging techniques and the quantitative analysis of complex image data. Rapid further advances are expected which will require close interdisciplinary interaction of plant biologists with chemists, physicists, mathematicians and computer scientists. High-throughput approaches will become increasingly important, to fill genomic data with ‘life’ on the scale of cell physiology. If the vast body of information generated in the -omics era is to generate actual mechanistic understanding of how the live plant cell works, functional imaging has enormous potential to adopt the role of a versatile standard tool across plant biology and crop breeding. We welcome original research papers, methodological papers, reviews and mini reviews, with particular attention to contributions in which novel imaging techniques enhance our understanding of plant cell physiology and permits to answer questions that cannot be easily addressed with other techniques.

Application of genetically encoded indicators to mammalian central nervous system

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198047 Year: Pages: 116 DOI: 10.3389/978-2-88919-804-7 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Genetically encoded indicators emerged as promising tools for cell type-specific and chronic recording of neuronal population activity. Since publication of the first prototypical genetically encoded Ca2+ indicators (Cameleons) in 1997, we have witnessed remarkable evolution of the field, with rapid improvement of indicator performance as well as expanded application to many model organisms in the neuroscience community. Challenges still remain, however, concerning the mammalian central nervous system: limited sensitivity of indicators to subtle changes in activity, slow signal kinetics, cytotoxicity after a long-term and high-level expression of indicators, and variable performance across cell types. In addition to improvement of the indicators per se, development of strategies that allow combined use of the indicators and optogenetic tools is also desired. In this Research Topic, we recruited top researchers in the field and their young colleagues to present their cutting-edge research as well as insightful opinions on the following subtopics:1) Latest breakthroughs on development of genetically encoded indicators2) Novel scientific findings obtained with genetically encoded indicators3) Wishlist for the next-generation genetically encoded indicators4) Guideline for selecting an appropriate indicator5) Optimal methodology for indicator delivery to mammalian CNS

Listing 1 - 2 of 2
Sort by
Narrow your search

Publisher

Frontiers Media SA (2)


License

CC by (2)


Language

english (2)


Year
From To Submit

2016 (1)

2015 (1)