Search results: Found 4

Listing 1 - 4 of 4
Sort by
Abiotic Stress: Molecular Genetics and Genomics

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193592 Year: Pages: 101 DOI: 10.3389/978-2-88919-359-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses.

Gene Silencing and Editing Strategies for Neurodegenerative Diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889455515 Year: Pages: 115 DOI: 10.3389/978-2-88945-551-5 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Neurology
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

Neurodegenerative diseases (NDs) are a heterogeneous group of disorders affecting the central nervous system. Despite significant differences in their causes, neuropathological abnormalities, and clinical outcomes, some similarities can be found among them, as for example: 1) frequent aggregation and deposition of misfolded proteins, 2) common molecular mechanisms leading to neurodegeneration, and 3) certain overlap in symptoms and clinical features. To date, there is no cure that could stop or delay the progression of these diseases. The advent of advanced gene therapy techniques such as gene silencing and gene editing opened a new avenue for the development of therapeutic strategies for NDs.The discovery of the RNA interference (RNAi) mechanism, in 1998, by Andrew Fire and Craig Mello allowed an important boost to the gene therapy field, providing a potential therapeutic strategy to treat inherited dominant genetic disorders. The use of small RNA sequences to control the expression of disease-causing genes rapidly implemented in the preclinical studies for different diseases. In the field of NDs, several successful studies using this technology proved its potential as a therapeutic option. However, issues like the type of delivery system (non-viral versus viral) or the potential toxicity of the small RNA molecules, made the translation of gene silencing therapeutics to human application very slow and difficult.Recently, a new hope in the gene therapy field emerged with the development of gene editing techniques like TALENs or CRISPR/Cas9 systems. The opportunity of editing or deleting gene sequences drove the scientific community euphoric, with an enormous increase in the number of published studies using this type of techniques. Recently, the first clinical trial using one of these systems was approved in China. For NDs, gene-editing technology also represents an important therapeutic option, and the first preclinical studies are now being published, showing the potential accomplishment for this technology.

Towards Mechanism-based Treatments for Fragile X Syndrome

Authors: ---
ISBN: 9783039215058 / 9783039215065 Year: Pages: 250 DOI: 10.3390/books978-3-03921-506-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

It has been more than 25 years since the identification of the FMR1 gene and the demonstration of the causative role of CGG-repeat expansion in the disease pathology of fragile X syndrome (FXS), but the underlying mechanisms involved in the expansion mutation and the resulting gene silencing still remain elusive. Our understanding of the pathways impacted by the loss of FMRP function has grown tremendously, and has opened new avenues for targeted treatments for FXS. However, the failure of recent clinical trials that were based on successful preclinical studies using the Fmr1 knockout mouse model has forced the scientific community to revisit clinical trial design and identify objective outcome measures. There has also been a renewed interest in restoring FMR1 gene expression as a possible treatment approach for FXS. This special issue of Brain Sciences highlights the progress that has been made towards understanding the disease mechanisms and how this has informed the development of treatment strategies that are being explored for FXS.

Keywords

fragile X syndrome --- clinical trials --- targeted treatments --- drug development --- fragile X syndrome --- clinical trials --- treatment development --- best practices --- fragile X syndrome --- newborn screening --- early identification --- fragile X syndrome --- X chromosome --- females --- FMR1 --- anxiety --- avoidance --- cognition --- behavior --- brain --- Fragile X --- FMRP --- Fxr2 --- Fmr1 --- fragile X syndrome --- executive function --- working memory --- set-shifting --- cognitive flexibility --- inhibitory control --- attention --- planning --- processing speed --- Fragile X syndrome 1 --- Fragile X-associated Tremor/Ataxia Syndrome 2 --- CRISPR 3 --- Trinucleotide Repeat 4 --- Gene editing --- fragile X syndrome --- FMR1 gene --- voice of the person --- voice of the patient --- characteristics that have the greatest impact --- developmental disorders --- fragile X syndrome --- language development --- automated vocal analysis --- adeno-associated virus --- autism spectrum disorders --- cerebral spinal fluid --- fragile X mental retardation protein --- neurodevelopmental disorders --- viral vector --- fragile X syndrome --- gene reactivation --- RNA:DNA hybrid --- FMRP --- histone methylation --- DNA methylation --- FMR1 --- PRC2 --- fragile X syndrome --- unstable repeat diseases --- epigenetic gene silencing --- DNA methylation --- repeat instability --- pluripotent stem cells --- CGG Repeat Expansion Disease --- DNA instability --- expansion --- contraction --- mismatch repair (MMR) --- base excision repair (BER) --- transcription coupled repair (TCR) --- double-strand break repair (DSBR) --- Non-homologous end-joining (NHEJ) --- mosaicism --- protein synthesis --- Fragile X Syndrome --- biomarker --- iPSC --- fibroblast --- lymphoblast --- fragile X syndrome --- molecular biomarkers --- FMR1 --- FMRP --- intellectual disability --- Fmr1 KO mouse --- ASD --- n/a

Plant Proteomic Research 2.0

Author:
ISBN: 9783039210626 / 9783039210633 Year: Pages: 594 DOI: 10.3390/books978-3-03921-063-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Plant Sciences
Added to DOAB on : 2019-06-26 08:44:07
License:

Loading...
Export citation

Choose an application

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

Phalaenopsis --- petal --- pollination --- senescence --- 2-DE --- ROS --- Medicago sativa --- leaf cell wall proteome --- cadmium --- quantitative proteomics --- 2D DIGE --- chloroplast --- elevated CO2 --- heat stress --- nucleotide pyrophosphatase/phosphodiesterase --- (phospho)-proteomics --- photosynthesis --- protein phosphorylation --- 14-3-3 proteins --- Oryza sativa L. --- starch --- sucrose --- N utilization efficiency --- proteomics --- 2D --- protein phosphatase --- rice isogenic line --- SnRK1 --- 14-3-3 --- lettuce --- bolting --- proteome --- high temperature --- iTRAQ --- proteome profiling --- iTRAQ --- differentially abundant proteins (DAPs) --- drought stress --- physiological responses --- Zea mays L. --- GS3 --- ? subunit --- heterotrimeric G protein --- mass spectrometric analysis --- RGG3 --- rice --- western blotting --- Dn1-1 --- ?-subunit --- heterotrimeric G protein --- mass spectrometry analysis --- RGG4 --- rice --- western blotting --- Clematis terniflora DC. --- polyphenol oxidase --- virus induced gene silencing --- photosynthesis --- glycolysis --- Camellia sinensis --- chlorotic mutation --- chlorophyll deficiency --- weakening of carbon metabolism --- iTRAQ --- proteomics --- degradome --- wheat --- cultivar --- protease --- papain-like cysteine protease (PLCP) --- subtilase --- metacaspase --- caspase-like --- wheat leaf rust --- Puccinia recondita --- Stagonospora nodorum --- iTRAQ --- proteomics --- somatic embryogenesis --- pyruvate biosynthesis --- Zea mays --- chlorophylls --- LC-MS-based proteomics --- pea (Pisum sativum L.) --- proteome functional annotation --- proteome map --- seeds --- seed proteomics --- late blight disease --- potato proteomics --- Phytophthora infestans --- Sarpo Mira --- early and late disease stages --- Simmondsia chinensis --- cold stress --- proteomics --- leaf --- iTRAQ --- Ricinus communis L. --- cold stress --- seed imbibition --- iTRAQ --- proteomics --- Morus --- organ --- gel-free/label-free proteomics --- flavonoid --- antioxidant activity --- phosphoproteome --- barley --- seed dormancy --- germination --- imbibition --- after-ripening --- sugarcane --- Sporisorium scitamineum --- smut --- proteomics --- RT-qPCR --- ISR --- holm oak --- Quercus ilex --- 2-DE proteomics --- shotgun proteomics --- non-orthodox seed --- population variability --- stresses responses --- ammonium --- Arabidopsis thaliana --- carbon metabolism --- nitrogen metabolism --- nitrate --- proteomics --- root --- secondary metabolism --- proteomics --- wheat --- silver nanoparticles --- plant pathogenesis responses --- data-independent acquisition --- quantitative proteomics --- Pseudomonas syringae --- sweet potato plants infected by SPFMV --- SPV2 and SPVG --- sweet potato plants non-infected by SPFMV --- SPV2 and SPVG --- co-infection --- transcriptome profiling --- gene ontology --- pathway analysis --- lesion mimic mutant --- leaf spot --- phenylpropanoid biosynthesis --- proteomics --- isobaric tags for relative and absolute quantitation (iTRAQ) --- rice --- affinity chromatography --- ergosterol --- fungal perception --- innate immunity --- pattern recognition receptors --- plasma membrane --- proteomics --- proteomics --- maize --- plant-derived smoke --- shoot --- Solanum tuberosum --- patatin --- seed storage proteins --- vegetative storage proteins --- tuber phosphoproteome --- targeted two-dimensional electrophoresis --- B. acuminata petals --- MALDI-TOF/TOF --- GC-TOF-MS --- qRT-PCR --- differential proteins --- n/a

Listing 1 - 4 of 4
Sort by
Narrow your search